Phil Trinder
Greg Michaelson
Ricardo Pena (Eds.)

Implementation of
Functional Languages

15th International Workshop, IFL 2003
Edinburgh, UK, September 2003
Revised Papers

LNCS 3145

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3145

Phil Trinder Greg Michaelson
Ricardo Pefia (Eds.)

Implementation of
Functional Languages

15th International Workshop, IFL 2003
Edinburgh, UK, September 8-11, 2003
Revised Papers

@ Springer

Volume Editors

Phil Trinder

Greg Michaelson

Heriot-Watt University

School of Mathematical and Computer Sciences
Riccarton, EH14 4AS, UK

E-mail: {trinder, greg} @macs.hw.ac.uk

Ricardo Pefia

Universidad Complutense de Madrid

Facultad de Informatica

Departamento Sistemas Informaticos y Programacion
C/ Juan del Rosal, 8, 28040 Madrid, Spain

E-mail: ricardo@sip.ucm.es

Library of Congress Control Number: 2004114139

CR Subject Classification (1998): D.3, D.1.1, F.3

ISSN 0302-9743

ISBN 3-540-23727-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11342205 06/3142 543210

Preface

Functional programming has a long history, reaching back through early realiza-
tions in languages like LISP to foundational theories of computing, in particular
A-calculus and recursive function theory. In turn, functional programming has
had wide influence in computing, both through developments within the disci-
pline, such as formal semantics, polymorphic type checking, lazy evaluation and
structural proof, and as a practical embodiment of formalized approaches, such
as specification, transformation and partial application.

One of the engaging features of functional programming is precisely the
crossover between theory and practice. In particular, it is regarded as essen-
tial that all aspects of functional programming are appropriately formalized,
especially the specification and implementation of functional languages. Thus,
specialist functional programming events like the International Workshop on
the Implementation of Functional Languages (IFL) attract contributions where
strong use is made of syntactic, semantic and meta-mathematical formalisms to
motivate, justify and underpin very practical software systems.

IFL grew out of smaller workshops aimed at practitioners wrestling with
the nuts and bolts of making concrete implementations of highly abstract lan-
guages. Functional programming has always been bedeviled by an unwarranted
reputation for slow and inefficient implementations. IFL is one venue where such
problems are tackled head on, always using formal techniques to justify practical
implementations.

The 15th International Workshop on the Implementation of Functional Lan-
guages (IFL 2003) was held in Edinburgh, Scotland from the 8th to the 11th
of September, 2003. Forty-two people attended the workshop, with participants
from Australia, Germany, The Netherlands, Hungary, Ireland, Russia, Spain,
Sweden and the USA, as well as from the UK.

There were 32 presentations at IFL 2003, in streams on testing, compilation
and implementation, applications, language constructs and programming, types
and program analysis, concurrency and parallelism, and language interfacing.
Twenty-eight papers were submitted for the draft proceedings. After refereeing,
12 papers were selected for publication in these proceedings, an acceptance rate
of 42%.

The Programme Committee was pleased to award the 2nd Peter Landin Prize
for the best IFL paper to Pedro Vasconcelos, first author of Inferring Costs for
Recursive, Polymorphic and Higher-Order Functional Programs'.

The 16th International Workshop on the Implementation and Application of
Functional Languages will be held in Liibeck, Germany in September 2004. For
further details, please see: http://www.isp.uni-luebeck.de/if104/index.htm.

! Co-author Kevin Hammond honorably declined to share the prize as he was associ-
ated with its establishment.

VI Preface

Acknowledgments

IFL 2003 was organized by the Department of Computer Science, School of
Mathematical and Computer Sciences, Heriot-Watt University.

We would like to thank June Maxwell and Christine Mackenzie for their most
able workshop administration and financial arrangements. We would also like to
thank Andre Rauber Du Bois for wrangling the WWW site, and Abyd Al Zain
and Jann Nystrom for workshop gophering.

We are pleased to acknowledge the sponsorship of the British Computer
Society Formal Aspects of Computing Special Interest Group.

May 2004 Phil Trinder, Greg Michaelson and Ricardo Pena

Preface VII

Programme Committee

Thomas Arts IT-University in Gothenburg, Sweden

Clemens Grelck University of Liibeck, Germany

Stephen Gilmore University of Edinburgh, UK

Kevin Hammond University of St Andrews, UK

Frank Huch Christian Albrechts University of Kiel,
Germany

Barry Jay University of Technology, Sydney, Australia

Greg Michaelson (Chair) Heriot-Watt University, UK

Yolanda Ortega Mallen Universidad Complutense de Madrid, Spain

Ricardo Pena Universidad Complutense de Madrid, Spain

Simon Peyton Jones Microsoft Research, UK

Rinus Plasmeijer University of Nijmegen, The Netherlands

Jocelyn Serot Blaise Pascal University, France

Phil Trinder (Chair) Heriot-Watt University, UK

David S. Wise Indiana University, USA

Referees

Abdallah Al Zain Ralf Laemmel Clara Segura

Artem Alimarine Hans-Wolfgang Loidl Sjaak Smetsers

Bernd Braflel Rita Loogen Jonathan Sobel

Olaf Chitil Jan Henry Nystrom Don Syme

Koen Claessen Enno Ohlebusch John van Groningen

Walter Dosch Lars Pareto Arjen van Weelden

Andre Rauber Du Bois Robert Pointon Pedro Vasconcelos

David de Frutos Escrig Fernando Rubio

Michael Hanus Sven-Bodo Scholz

Sponsors

BCS

Table of Contents

Implementation of Functional Languages

I Language Constructs and Programming

Lazy ASSErtionst 1
Olaf Chitil, Dan McNeill, and Colin Runciman

Interfacing Haskell with Object-Oriented Languages 20
André T.H. Pang and Manuel M.T. Chakravarty

A Functional Shell That Dynamically Combines Compiled Code 36
Arjen van Weelden and Rinus Plasmeijer

II Static Analysis and Types

Polymorphic Type Reconstruction Using Type Equations 53
Venkatesh Choppella

Correctness of Non-determinism Analyses
in a Parallel-Functional Language 69
Clara Segura and Ricardo Pena

Inferring Cost Equations for Recursive, Polymorphic
and Higher-Order Functional Programs 86
Pedro B. Vasconcelos and Kevin Hammond

IITI Paralelism

Dynamic Chunking in Eden 102
Jost Berthold

With-Loop Scalarization — Merging Nested Array Operations 118
Clemens Grelck, Sven-Bodo Scholz, and Kai Trojahner

Building an Interface Between Eden and Maple:
A Way of Parallelizing Computer Algebra Algorithms 135
Rafael Martinez and Ricardo Pena

Generic Graphical User Interfaces 152
Peter Achten, Marko van FEekelen, and Rinus Plasmeijer

Polytypic Programming in Haskell 168
Ulf Norell and Patrik Jansson

Author Index 185

Lazy Assertions

Olaf Chitil, Dan McNeill, and Colin Runciman

Department of Computer Science, The University of York, UK

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal working of a program. So in a lazy functional
language assertions should be lazy — not forcing evaluation, but only ex-
amining what is evaluated by other parts of the program. We explore the
subtle semantics of lazy assertions and describe sequential and concur-
rent variants of a method for checking lazy assertions. All variants are
implemented in Haskell.

1 Introduction

A programmer writing a section of code often has in mind certain assumptions
or intentions about the values involved. Some of these assumptions or intentions
are expressed in a way that can be verified by a compiler, for example as part of
a type system. Those beyond the expressive power of static types could perhaps
be proved separately as theorems, but such a demanding approach is rarely
taken. Instead of leaving key properties unexpressed and unchecked, a useful
and comparatively simple option is to express them as assertions — boolean-
valued expressions that the programmer assumes or intends will always be true.
Assertions are checked at run-time as they are encountered, and any failures are
reported. If no assertion fails, the program runs just as it would normally, apart
from the extra time and space needed for checking.

The usefulness of assertions in conventional state-based programming has
long been recognised, and many imperative programming systems include some
support for them. In these systems, each assertion is attached to a program point;
whenever control reaches that point the corresponding assertion is immediately
evaluated to a boolean result. Important special cases of program points with
assertions include points of entry to, or return from, a procedure.

In a functional language, the basic units of programs are expressions rather
than commands. The commonest form of expression is a function application. So
our first thought might be that an assertion in a functional language can simply
be attached to an expression: an assertion about arguments (or ‘inputs’) alone
can be checked before the expression is evaluated and an assertion involving
the result (or ‘output’) can be checked afterwards. But in a lazy language this
view is at odds with the need to preserve normal semantics. Arguments may
be unevaluated when the expression is entered, and may remain unevaluated or
only partially evaluated even after the expression has been reduced to a result.
The result itself may only be evaluated to weak head-normal form. So neither
arguments nor result can safely be the subjects of an arbitrary boolean assertion
that could demand their evaluation in full.

P. Trinder, G. Michaelson, and R. Penia (Eds.): IFL 2003, LNCS 3145, pp. 1-19, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Olaf Chitil, Dan McNeill, and Colin Runciman

How can assertions be introduced in a lazy functional language? How can we
satisfy our eagerness to evaluate assertions, so that failures can be caught as soon
as possible, without compromising the lazy evaluation order of the underlying
program to which assertions have been added? We aim to support assertions
by a small but sufficient library defined in the programming language itself.
This approach avoids the need to modify compilers or run-time systems and
gives the programmer a straightforward and familiar way of using a new facility.
Specifically, we shall be programming in Haskell[3].

The rest of the paper is organised as follows. Section 2 uses two examples
to illustrate the problem with eager assertions in a lazy language. Section 3
outlines and illustrates the contrasting nature of lazy assertions. Section 4 first
outlines an implementation of lazy assertions that postpones their evaluation
until the underlying program is finished; it then goes on to describe alternative
implementations in which each assertion is evaluated by a concurrent thread.
Section 5 uncovers a residual problem of sequential demand within assertions.
Section 6 gives a brief account of our early experience using lazy assertions in
application programs. Section 7 discusses related work. Section 8 concludes and
suggests future work.

2 Eager Assertions Must Be True

A library provided with the Glasgow Haskell compiler! already includes a func-
tion assert :: Bool -> a -> a. It is so defined that assert True x = x but
an application of assert False causes execution to halt with a suitable error
message. An application of assert always expresses an eager assertion because
it is a strict function: evaluation is driven by the need to reduce the boolean ar-
gument, and no other computation takes place until the value True is obtained.

Example: Sets as Ordered Trees
Consider the following datatype.

data Ord a => Set a = Empty
| Union (Set a) a (Set a)

Functions defined over sets include with and elem, where s ‘with’ x represents
sU{z} and x ‘elem’ s represents the membership test x € s.

with :: Ord a => Set a -> a -> Set a

Empty ‘with’ x = Union Empty x Empty

(Union s1 y s2) ‘with’ x = case compare x y of
LT -> Union (sl ‘with’ x) y s2
EQ -> Union sl y s2
GT -> Union sl y (s2 ‘with’ x)

! http://www.haskell.org/ghc

Lazy Assertions 3

elem :: Ord a => a -> Set a —-> Bool

x ‘elem’ Empty = False

x ‘elem’ (Union sl y s2) = case compare x y of
LT -> x ‘elem’ si1
EQ -> True
GT -> x ‘elem’ s2

The 0rd a qualification in the definition of Set and in the signatures for
with and elem only says that comparison operators are defined for the type a.
It does not guarantee that Set a values are strictly ordered trees, which is what
the programmer intends. To assert this property, we could define the following
predicate.

strictlyOrdered :: Ord a => Set a -> Bool
strictlyOrdered = soBetween Nothing Nothing
where
soBetween _ _ Empty = True
soBetween lo hi (Union sl x s2) = between lo hi x &&
soBetween lo (Just x) sl &&
soBetween (Just x) hi s2
between lo hi x = maybe True (< x) lo && maybe True (> x) hi

Something else the programmer intends is a connection between with and
elem. It can be expressed by asserting x ‘elem’ (s ‘with’ x). Combining this
property with the ordering assertion we might define:

s ‘checkedWith’ x = assert post s’

where

s’ = assert pre s ‘with’ x

pre = strictlyOrdered s

post = strictlyOrdered s’ && x ‘elem’ s’

Observations. The eager assertions in checkedWith may ‘run ahead’ of evalu-
ation actually required by the underlying program, forcing fuller evaluation of
tree structures and elements. The strict-ordering test is a conjunction of two
comparisons for every internal node of a tree, forcing the entire tree to be eval-
uated (unless the test fails). Even the check involving elem forces the path from
the root to x.

Does this matter? Surely some extra evaluation is inevitable when non-trivial
assertions are introduced? It does matter. If assertion-checking forces evaluation
it could degenerate into a pre-emptive, non-terminating and unproductive pro-
cess. What if, for example, a computation involves the set of all integers, rep-
resented as in Figure 1?7 Functions such as elem and with still produce useful
results. But checkedWith eagerly carries the whole computation away on an
infinite side-track!

Even where eager assertions terminate they may consume time or space out
of proportion with normal computation. Also, assertions are often checked in the

4 Olaf Chitil, Dan McNeill, and Colin Runciman
/ 0 \
-2 +2
N\ /
-1 +1

+6

N

-4 +4

/S N/

-5 -3 +3 +5

Fig.1. A tree representation of the infinite set of integers. Each integer 7 occurs at
a depth no greater than 2log,(abs(i) + 1). Differences between adjacent elements on
leftmost and rightmost paths are successive powers of two.

hope of shedding light on a program failure; it could be distracting to report a
failed assertion about values that are irrelevant as they were never needed by
the failing program.

3 Lazy Assertions Must Not Be False

So assertions should only examine those parts of their subject data structures
that are in any case demanded by the underlying program. Lazy assertions should
make a (provisional) assumption of validity about other data not (yet) evaluated.
Computation of the underlying program should proceed not only if an assertion
reduces to True, but also if it cannot (yet) be reduced to a value at all; the only
constraint is that an assertion must never reduce to False.

If we are to guard data structures that are the subjects of assertions from
over-evaluation, we cannot continue to allow arbitrary boolean expressions in-
volving these structures. We need to separate the predicate of the assertion from
the subject to which it is applied. An implementation of assertions should com-
bine the two using only a special evaluation-safe form of application. So the type
of assert becomes

assert :: (a -> Bool) -> a -> a

where assert p acts as a lazy partial identity.

Example Revisited

If we had an implementation of this lazy assert, how would it alter the ordered-
tree example? In view of the revised type of assert, the definition of
checkedWith must be altered slightly, making pre and post predicates rather
than booleans.

Lazy Assertions 5

1. main computation 2. assertion computations

assertion store

Fig. 2. Delayed Assertions in Time.

s ‘checkedWith’ x = assert post (assert pre s ‘with’ x)
where
pre = strictlyOrdered
post = \s’ -> strictlyOrdered s’ && x ‘elem’ s’

Now the computation of a checkedWith application proceeds more like a normal
application of with. Even if infinite sets are involved, the corresponding asser-
tions are only partially computed, up to the limits imposed by the finite needed
parts of these sets.

4 Implementation

Having established the benefits of lazy assertions we now turn to the question
of how they can be implemented in Haskell. We develop an assertion library in
steps: we start with a simple version, criticise it, and then refine it to the next
version.

4.1 Delayed Assertions

We have to ensure that the evaluation of the assertions cannot disturb the eval-
uation of the underlying program. A very simple idea for achieving this is to
evaluate all assertions after termination of the main computation.

Figure 2 illustrates the idea. The main computation only evaluates the un-
derlying program and collects all assertions in a global store. After termination
of the main computation assertions are taken from the store and evaluated one
after the other.

We are certain that lazy assertions cannot be implemented within pure
Haskell 98. In particular we need the function unsafePerformI0 :: I0 a -> a
to perform actions of the IO monad without giving assert a monadic type.
We aim to minimise the use of language extensions and restrict ourselves to
extensions supported by most Haskell systems. Our implementation is far more
concise and potentially portable than any modification of a compiler or run-time
system could be.

6 Olaf Chitil, Dan McNeill, and Colin Runciman

Which extensions do we need for delayed assertions? Extended exceptions
enable a program to catch all erroneous behaviour of a subcomputation. They
ensure that all assertions are evaluated, even if the main computation or any
other assertion evaluated earlier fails. A mutable variable of type IORef im-
plements the global assertion store. Finally unsafePerformI0 :: I0 a -> a
enables us to implement assert using exceptions and mutable variables [7].

Properties of the Implementation. This simple implementation does not prevent
an assertion from evaluating a test argument further than the main computation
did. Because assertion checking is delayed, over-evaluation cannot disturb the
main computation, but it can cause run-time errors or non-termination in the
evaluation of an assertion (see Section 2).

4.2 Avoiding Over-Evaluating

To avoid over-evaluation do we need any non-portable “function” for testing if an
expression is evaluated? No, exceptions and the function unsafePerformIO are
enough. We can borrow and extend a technique from the Haskell Object Obser-
vation Debugger (HOOD) [4]. We arrange that as evaluation of the underlying
program demands the value of an expression wrapped with an assertion, the
main computation makes a copy of the value. Thus the copy comprises exactly
those parts of the value that were demanded by the evaluation of the underlying
program.

We introduce two new functions, demand and listen. The function demand
is wrapped around the value that is consumed by the main computation. The
function returns that value and, whenever a part of the value is demanded, the
function also adds the demanded part to the copy. The assertion uses the result
of the function listen. The function listen simply returns the copy; because
listen is only evaluated after the main computation has terminated, listen
returns those parts of the value that were demanded by the main computation.
If the result of listen is evaluated further, then it raises an exception. For
every part of a value there is a demand/listen pair that communicates via an
I0Ref. The value of the IORef is Unblocked v to pass a value v (weak head
normal form) or Blocked to indicate that the value was not (yet) demanded.
The implementation of demand is specific for every type. Hence we introduce a
class Assert and the type of assert becomes Assert a => String -> (a ->
Bool) -> a -> a. Appendix A gives the details of the implementation.

Properties of the Implementation. An assertion can use exactly those parts of
values that are evaluated by the main computation, no less, no more. However, if
an assertion fails, the programmer is informed rather late; because of the problem
actually detected by the assertion, the main computation may have run into a
run-time error or worse a loop. The computation is then also likely to produce a
long, fortunately ordered, list of failed assertions. A programmer wants to know
about a failed assertion before the main computation uses the faulty value!

Lazy Assertions 7

main I e . N
computation : :
i :

T .

assertion —_ :
computations :
1

Fig. 3. Concurrent Assertions in Time.

4.3 Concurrent Assertions

How can we evaluate assertions as eagerly as possible yet still only using data that
is demanded by the main computation? Rather than delaying assertion checking
to the end, we can evaluate each assertion in a separate thread concurrently to
the main computation. We require a further extension of Haskell 98: Concurrent
Haskell [7].

Figure 3 illustrates the idea. Each evaluation of assert in the main com-
putation starts a new thread for evaluating the assertion itself. As before, the
value tested by an assertion is copied as it is demanded by the main compu-
tation and the copy is used by the assertion. Replacing the I0OVar shared by
a demand/listen pair by an MVar synchronises the assertion thread with the
demand of the main computation. The assertion thread has to wait when it tries
to evaluate parts of the copy that do not (yet) exist.

Properties of the Implementation. Concurrency ensures that even if the main
computation runs into an infinite loop, a failed assertion will be reported. In
general failed assertions may be reported earlier. However, there is no guarantee,
because the scheduler is free to evaluate assertions at any time. They may — and
in practice often are — evaluated after the main computation has terminated.

4.4 Priority of Assertions

To solve the problem we need to give assertion threads priority over the main
computation. Unfortunately Concurrent Haskell does not provide threads with
different priorities. However, coroutining enables us to give priority to assertions.
We explicitly pass control between each assertion thread and the main thread.
When an assertion demands a part of a value that has not yet been demanded
by the main computation, the assertion thread is blocked and control is passed
to the main thread. Whenever the main thread demands another part of the
tested value and an assertion thread is waiting for that value, the main thread
is blocked and control is passed to the assertion thread. Thus the assertion
always gets a new part of the value for testing before it is used by the main
computation. Figure 4 illustrates the idea and Appendix B gives the details of
the implementation which uses semaphores to pass control.

8 Olaf Chitil, Dan McNeill, and Colin Runciman

main ———- —_— . — —e _
computation . Co : :
P —
assertion —
computations

Fig. 4. Concurrent Assertions with Priority in Time.

Properties of the Implementation. Coroutining ensures that a failed assertion is
reported before the main computation uses the faulty value. Furthermore, the
implementation does not hold onto all data needed by assertions until the end of
the computation, because assertions are evaluated as early as possible without
over-evaluation. However, assertions that cannot be fully evaluated are still live
until the end of the whole computation.

4.5 Garbage Collecting Stuck Assertions

When a tested value is no longer reachable from the main computation thread,
it will no longer be demanded by the main computation and hence the assertion
thread is permanently stuck. We extend the coroutining implementation with
finalisers [8] that kill an assertion thread when its value is no longer reachable
from the main computation thread.

Properties of the Implementation. This implementation reduces the require-
ments for space and threads.

4.6 Conclusions

During development we identified the following important properties of a lazy
assertion library.

— Evaluation of assertions does not influence the main computation.

— Assertions do not evaluate values further than the main computation does.

— A failed assertion is reported before the main computation uses the faulty
value.

— The requirements for space and threads are minimised.

For each property we developed a new implementation. Unfortunately we find
that the implementations using coroutining violate the first property. Suppose
we define assertFun as follows to assert a relation between the argument and
result of a function.

Lazy Assertions 9

assertFun :: (Assert a, Assert b)
=> String -> (a->b->Bool) -> (a->b) -> (a->b)
assertFunn p £ i = o’
where
(i’,0’) = assert n (uncurry p) (i,f i’)

This cyclic definition works fine with all but the coroutining implementations of
assert. With coroutining a deadlock occurs because the assertion thread waits
for the input i’ of the function which has to be produced by the assertion thread
itself.

We conclude that the concurrent implementation without priorities is the
most useful implementation we have. We have to aim for a concurrent imple-
mentation with priorities and garbage collection of stuck assertions that controls
threads less restrictively than coroutining.

5 Sequential Semantics Causes Stuck Assertions

We noted in Section 3 that lazy assertions must not be False. Computation
of the underlying program should proceed not only if an assertion reduces to
True, but also if computation of the assertion is stuck, that is the assertion
cannot (yet) be reduced to a value at all. Consequently our implementations do
not distinguish between assertions that reduce to True and assertions that are
stuck.

Evaluation order can often be disregarded when considering the correctness
of lazy functional programs. Lazy evaluation does, however, specify a mostly
sequential semantics. The semantics of logical connectives such as (&&) are not
symmetric. When the order in which an assertion demands components of a data
structure does not agree with the order in which the main computation demands
the components of that data structure, the assertion can get stuck.

Example Revisited Again
Consider evaluation of the following expression:

5 ‘elem’ (assert "ordered" strictlyOrdered
(Union (Union Empty 2 Empty) 3 (Union Empty 1 Empty)))

The given set is not strictly ordered, but no assertion fails! This is because
only the part

Union _ 3 (Union _ 1 Empty)

of the set is ever demanded by the computation (indicates an undemanded
expression). The computation of the function strictlyOrdered traverses the
tree representation of the set in preorder. Hence it gets stuck on the unevaluated
left subtree of the root Union constructor. Consequently it never makes the
comparison 3 < 1 which would immediately make the assertion fail.

10 Olaf Chitil, Dan McNeill, and Colin Runciman

Detecting the Problem. It would help to list at the end of all computation all
assertions that are stuck. It is easy to extend our implementations to do this.

A Solution? We could avoid sequentiality in the assertion by creating a separate
assertion for each atomic test. In the following definition the sequential (&&)s
have been replaced by asserts that do not actually check any property of their
last arguments but start separate assertions. This assertion is as eager as possible,
because each between comparison is separate.

assertStrictlyOrdered :: Ord a => String -> Set a -> Set a
assertStrictlyOrdered n = assert n (soBetween Nothing Nothing)
where
soBetween _ _ Empty = True
soBetween lo hi (Union sl x s2) =
assert n (const (soBetween lo (Just x) s1)) $
assert n (const (soBetween (Just x) hi s2)) $
between lo hi x
between lo hi x = maybe True (< x) lo && maybe True (> x) hi

These assertions within assertions work with all implementations except for
the coroutining ones. Again coroutining leads to a deadlock.

Using assertions within assertions is a trick that should not be our final
answer to the problem of stuck sequential assertions. An alternative implemen-
tation might use a new type that replaces Bool and provides a parallel logical
conjunction.

6 Larger Applications

As yet we have only tried out lazy assertions in a few programs of modest size.
We note briefly some of our experience with two of these programs.

Clausify
The clausify program puts propositions represented using the type

= Sym Char | Neg Prop
| Dis Prop Prop | Con Prop Prop
| Imp Prop Prop | Eqv Prop Prop

data Prop

into clausal form, by a composition of several stages. We found it convenient to
write assertions using an auxiliary function

propHas :: (Prop -> Bool) -> Prop -> Bool

defined so that propHas t p applies test t both to p itself and to all Props that
p contains. We also find a use for implication lifted to predicate level

implies :: (a -> Bool) -> (a -> Bool) -> (a -> Bool).

Lazy Assertions 11

After successive stages, the following assertions should hold, cumulatively:

1. propHas (\p -> not (isImp p || isEqv p))
Imp and Eqv are eliminated.

2. propHas (isNeg ‘implies’ (\(Neg q) -> isSym q))
In addition, Neg (Sym) is the only permitted form of negation.

3. propHas (isDis ‘implies’ \(Dis p q) -> not (isCon p || isCon q))
Further, no Con occurs within a Dis.

If a fault is introduced into any of these stages, so that it fails to normalise a
proposition as it should, the result is typically a pattern-matching failure in a
later stage. We found that lazy assertion checking often reports the failure in
the earlier stage, but sometimes inconclusively reports the relevant assertion as
stuck. To minimise stuckness one has to think carefully about evaluation order
in assertions.

Pasta

Further issues arose when we introduced lazy assertions in pasta, an interpreter
for a small imperative language with dynamic data structures. Our goal was to
assert a data invariant for a moderately complex data structure representing the
environment and store:

data EnvStore = ES {sig :: Signature,
ops :: [Operation],
scope :: [Name],
stack :: [Value],
heap :: [StructVall}

To make assertions over EnvStore values would seem to require an Assert in-
stance for EnvStore. But because of the various component types (and their
component types etc.) this would mean a fair bit of work in several different
modules. As the invariant properties relate only the scope, stack and heap, we
avoid much of this work by embedding the invariant assertion in a smart con-
structor like this:

es si o sc st h =ES si o sc’ st?” h’
where
(sc’,st’,h’) = assert "ES invariant" datalnv (sc,st,h)

The details of dataInv are not important here. The most surprising result was
that none of the dataInv assertions was ever fully evaluated! The explanation
is that the interpreter uses EnvStore values in a single-threaded way, and each
state change only involves accessing a small part of the relevant EnvStore. Since
lazy assertions only check the parts actually used by the program, they never
get to check a complete EnvStore structure. The contrast with an eager data
invariant is striking.

12 Olaf Chitil, Dan McNeill, and Colin Runciman

7 Related Work

The work reported in this paper started as a BSc project. The second author’s
dissertation [5] describes experiments with an earlier version of concurrent as-
sertions.

In Section 4 we adapted a technique first used in HOOD [4]. HOOD defines a
class of types for which an observe function is defined. Programmers annotate
expressions whose values they wish to observe by applying observe label to them,
where label is a descriptive string. These applicative annotations act as identities
with a useful side-effect: each value to which an annotated expression reduces — so
far as it is demanded by lazy evaluation — is recorded, fragment by fragment as it
is evaluated, under the appropriate label. The similarity of observe and assert
is clear, but an important difference is that whereas observe records a sequence
of labelled fragments for subsequent inspection or separate processing, assert
reassembles them for further computation within the same Haskell program. A
HOOD programmer can evaluate by inspection any assumptions or intentions
they may have about recorded values, but this inspection is a laborious and
error-prone alternative to machine evaluation of predicates.

HOOD does not require threads or non-trivial delayed computations. A frag-
ment of a value is recorded just when it is demanded. It would be nice if the
implementation of assertions could be that simple. However, an assertion usually
relates several fragments of a value, for example, it may compare two numbers
in a tree. The assertion can only be checked when the last of the two numbers
becomes available, no matter in which order they are demanded by the main
computation. Additionally, the demands of the assertion predicate can only be
determined by applying it to an argument.

Another well-established Haskell library for checking properties of functional
programs is QuickCheck [1]. Properties are defined as boolean-valued functions,
as in the example:

prop_ElemWith :: Set Int -> Int -> Bool
prop_ElemWith s x = x ‘elem’ (s ‘with’ x) == True

Evaluating quickCheck prop ElemWith checks the property using a test suite of
pseudo-randomly generated sets and elements as the values of s and x. The test-
value generators are type-determined and they can be customised by program-
mers. QuickCheck reports statistics of successful tests and details of any failing
case discovered. This sort of testing nicely complements assertions. QuickCheck
properties are not limited to expressions that fit the context of a particular
program point, and a separate testing process imposes no overhead when an
application is run. But assertions have the advantage of testing values that ac-
tually occur in a program of interest, and provide a continuing safeguard against
undetected errors.

Moller [6] offers a different perspective on the role of assertions in a func-
tional language. The motivating context for his work is transformational program
development; assertions carry parts of the specification and are subject to refine-
ment. He assumes strict semantics, however, and does not consider the problem
of assertions in a lazy language.

Lazy Assertions 13

8 Conclusions and Future Work

Assertions, first used in call-by-value procedural languages, can also be useful in
a call-by-need functional language; but they should be constrained appropriately.
The key requirement is that assertion-checking never forces evaluation beyond
the needs of the underlying program.

We have shown how appropriately lazy assertions can be supported by a high-
level library. Our account has been based on experimental prototypes developed
using the Glasgow Haskell Compiler, and these prototypes do rely on some of
the language extensions this compiler supports. We would prefer to have a more
portable library.

It would be easy to extend the reports from a failed assertion to include the
evaluated part of its subject value. To allow the causes of assertion failures to
be traced, we may eventually support the use of assertions in connection with
Hat [9,2].

We do need more experience with the use of lazy assertions in larger applica-
tions. So far we have found that expressing assertions in the functional language
itself is a pleasant task, but it might be useful to include a few standard com-
binators in the library, especially for making assertions about functional (and
perhaps monadic) values. Programming lazy assertions to fail as eagerly as pos-
sible can be tricky, and it is not yet clear whether suitable abstractions such as
concurrent logical operators will help. We also need to explore further the effect
of assertions on the time and space performance of a program, particularly as the
copying of values can cause a loss of sharing. Pragmatics are not easily hidden
by abstraction!

Acknowledgements

Thanks to Dean Herington, Claus Reinke and Simon Peyton Jones for their
contributions to a discussion on the Haskell mailing list about how to achieve
data-driven concurrency.

References

1. K. Claessen and R. J. M. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In Proc. 5th Intl. ACM Conference on Functional
Programming, pages 268-279. ACM Press, 2000.

2. K. Claessen, C. Runciman, O. Chitil, J. Hughes, and M. Wallace. Testing and
tracing lazy functional programs using QuickCheck and Hat. In Lecture notes of
the 4th Intl. Summer School in Advanced Functional Programming. 40pp, to appear
in Springer LNCS, 2002.

3. S. L. Peyton Jones (Ed.). Haskell 98: a non-strict, purely functional language.
Journal of Functional Programming, 13(1):special issue, 2003.

4. A. Gill. Debugging Haskell by observing intermediate datastructures. FElectronic
Notes in Theoretical Computer Science, 41(1), 2001. (Proc. 2000 ACM SIGPLAN
Haskell Workshop).

14 Olaf Chitil, Dan McNeill, and Colin Runciman

5. D. McNeill. Concurrent data-driven assertions in a lazy functional language. Tech-
nical report, BSc Project Dissertation, Department of Computer Science, University
of York, 2003.

6. B. Moller. Applicative assertions. In J. L. A. van de Snepscheut, editor, Mathematics
of Program Construction, pages 348-362. Springer LNCS 375, 1989.

7. S. L. Peyton Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions and foreign-language calls in haskell. In C. A. R. Hoare, M. Broy,
and R. Steinbruggen, editors, Engineering theories of software construction, pages
47-96. I0OS Press, 2001.

8. Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. Stretching the storage
manager: Weak pointers and stable names in haskell. In Implementation of Func-
tional Languages, 11th International Workshop, IFL’99, volume 1868 of LNCS 1868,
pages 37-58, 2000.

9. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing for
Haskell: a new Hat. In ACM Workshop on Haskell, 2001.

A Sequential Implementation:
Delayed Assertions Avoiding Over-Evaluation

We introduce a global mutable variable finalisers that stores a list of pending
assertions, to be checked at the end of the main computation.

finalisers :: IORef [I0 ()]
finalisers = unsafePerformI0 $ newIORef []

The function assert simply adds an assertion to the finalisers list. The
function also takes a string as argument to simplify identification when an as-
sertion fails.

assert :: Assert a => String -> (a -> Bool) -> a -> a
assert s p x = unsafePerformIO $ do
r <- newIORef Blocked
fins <- readIORef finalisers
writeIORef finalisers (evalAssertion s p (listen r) : fins)
return (demand r x)

Only evaluation of evalAssertion n p x actually evaluates the assertion of
name n and predicate p with test argument x. The function evalAssertion
has to catch exceptions to ensure that an exception in one assertion does not
prevent the remaining pending assertions from being tested. The function
evalAssertion also has to handle the case that it is blocked to avoid over-
evaluation:

evalAssertion :: String -> (a -> Bool) -> a -> I0 O
evalAssertion n p x = do
Control.Exception.catch
(when (not (p x))
(hPutStrln stderr ("\nAssertion " ++ show n ++ " failed.")))

Lazy Assertions 15

(\e -> case e of
ErrorCall "blocked" -> return ()
_ => hPutStrLn stderr ("\nAssertion " ++ show n ++
" raised exception: " ++
show e))

To use assertions we have to wrap the action corresponding to the underlying
program by applying runA to it. To ensure that the assertions are always run at
the end of the computation, the definition of runA has to catch any exception
occurring in the main computation?.

rundA :: I0 a -> I0 O
runA io = do
Control.Exception.catch io
(const (putStrLn "Exception occurred in main computation" >>
return undefined))
fins <- readIORef finalisers
sequence_ fins

Finally the functions demand and listen implement the demand driven copy-
ing of a tested value by the main computation for the assertion.

data ValState a = Blocked | Unblocked a

class Assert a where
demand :: IORef (ValState a) -> a -> a

instance Assert a => Assert [a] where

demand r [] = unsafePerformIO $ do
writeIORef r (Unblocked [])
return []

demand r (x:xs) = unsafePerformI0O $ do
rl <- newIORef Blocked
r2 <- newIORef Blocked
writeIORef r (Unblocked (listen rl : listen r2))
return (demand rl1 x : demand r2 xs)

listen :: IORef (ValState a) -> a
listen r = unsafePerformI0 $ do
val <- readIORef r
case val of
Blocked -> error "blocked"
Unblocked x -> return x

2 The variable finalisers is initialised with the empty list. However, interactive inter-
preters may not reevaluate a CAF such as finalisers every time a new expression
is interactively evaluated. Hence to ensure correct initialisation we have to insert
writeIORef finalisers [] as first line in the do block of runA.

16 Olaf Chitil, Dan McNeill, and Colin Runciman

B Concurrent Implementation: Assertions with Priority

To control the running status of a pair of threads we introduce a Switch of two
binary semaphores and associated functions for passing control. The function
waitQSem blocks a thread until a ‘unit’ of a semaphore becomes available, and
signalQSem makes a ‘unit’ available.

data Switch = S QSem QSem

initSwitch :: I0 Switch

initSwitch = do mainS <- newQSem (-1)
assertS <- newQSem (-1)
return (S mainS assertS)

continueAssert :: Switch -> I0 ()
continueAssert (S mainS assertS) = do signalQSem assertS
waitQSem mainS

continueMain :: Switch -> I0 ()
continueMain (S mainS assertS) = do signalQSem mainS
waitQSem assertS

finishAssert :: Switch -> I0 ()
finishAssert (S mainS _) = signalQSem mainS

A part of a tested value can be in any of three states: (1) not yet demanded
by either the main or the assertion thread, (2) demanded by the assertion thread
which is hence blocked, and (3) evaluated, because it was demanded by the main
thread:

data ValState a = Untouched | DemandedByAssert | Evaluated a

The basic idea of copying the test value on demand is still the same as
before. As a helper for the function demand we introduce the function copy. It
distinguishes the states DemandedByAssert and Evaluated and passes control
to the assertion thread in the first case. Similarly the function listen passes
control according to the state.

class Assert a where
demand :: a -> Switch -> IORef (ValState a) -> a

instance Assert a => Assert [a] where
demand [] s = unsafePerformIO $ do
copy s r []
return []
demand (x:xs) s = unsafePerformI0O $ do
rl <- newIORef Untouched
r2 <- newlIORef Untouched

Lazy Assertions

copy s r (listen s rl : listen s r2)
return (demand x s rl : demand xs s r2)

copy :: Switch -> IORef (ValState a) -> a -> I0 (O
copy s r x = do
state <- readIORef r
case state of
Untouched -> writeIORef r (Evaluated x)
DemandedByAssert -> do
writeIORef r (Evaluated x)
continueAssert s

listen :: Switch -> IORef (ValState a) -> a
listen s r = unsafePerformIO $ do
state <- readIORef r
case state of
Untouched -> do
writeIORef r DemandedByAssert
continueMain s
state <- readIORef r
case state of
Evaluated x -> return x
Evaluated x -> return x

17

Finally we adapt the definitions of the function assert and evalAssertion

to the concurrent setting. The function forkIO starts a new thread.

assert :: Assert a => String -> (a -> Bool) -> a -> a
assert n p x = unsafePerformIO $ do
r <- newIORef Untouched
s <- initSwitch
forkI0 (evalAssertion n p (listen s r) >> finishAssert s)
continueAssert s
return (demand x s r)

evalAssertion :: String -> (a -> Bool) -> a -> I0 ()
evalAssertion n p x = do
Control.Exception.catch
(when (not (p x))

(hPutStrLn stderr ("\nAssertion " ++ show n ++ " failed.")))

(\e -> hPutStrLn stderr
("\nAssertion " ++ show n ++
" failed with exception: " ++ show e)

This implementation does not need a wrapper function runA.

18 Olaf Chitil, Dan McNeill, and Colin Runciman
C The Class Assert and Its Instances

In both sequential and concurrent implementations there is a class Assert. We
need an instance of Assert for every type of value that we wish to make as-
sertions about. To simplify the writing of new instances we define a family of
demand,, functions. For the concurrent implementation they are defined as fol-
lows:

demandO :: Switch -> I0Ref (ValState a) -> a -> a
demand0 x s r = unsafePerformIO $ do

Copy S r X

return x

demandl :: (Assert b) => (b -> a) > b
-> Switch -> I0Ref (ValState a) -> a
demandl ¢ x1 s r = unsafePerformI0 $ do
rl <- newIORef Untouched
copy s r (c (listen s rl))
return (¢ (demand x1 s r1))

demand2 :: (Assert b, Assert c) => (¢ => b ->a) ->c > b
-> Switch -> I0Ref (ValState a) -> a

demand2 ¢ x1 x2 s r = unsafePerformI0 $ do
rl <- newIORef Untouched
r2 <- newIORef Untouched
copy s r (c (listen s r1) (listen s r2))
return (¢ (demand x1 s r1) (demand x2 s r2))

Instances thus become short and easy to write:

instance Assert a => Assert [a] where
demand [] = demandO []
demand (x:xs) = demand2 (:) x xs

instance (Assert a,Assert b) => Assert (a,b) where
demand (x,y) = demand2 (,) x y

instance Assert Char where
demand ¢ = ¢ ‘seq’ demandO c

The use of seq is needed in the last case where no pattern matching takes place
to ensure that the value is always evaluated by the main thread, not the assertion
thread.

Although this is an improvement, a tool such as DrIFT? is still useful to
derive what may be a large number of instances.

3 http://repetae.net/john/computer/haskell/DrIFT/

Lazy Assertions 19

A different problem is that the class context of the function assert restricts
its use in the definition of polymorphic functions. For our running example we
obtain the type

checkedWith :: (Ord a, Assert a) => Set a -> a -> Set a

Users of HOOD seem to be able to live with a similar restriction.

For Hugs there is a special version of HOOD that provides a built-in poly-
morphic function observe. Likewise a built-in polymorphic function assert is
feasible. Even better, since the implementations of observe and assert are
based on the same technique, it is desirable to identify the functionality of a
single built-in polymorphic function in terms of which both observe, assert
and possibly further testing and debugging functions could be defined. A built-
in polymorphic function removes both the annoying need for a large number of
similar instances and the restricting class context.

Interfacing Haskell
with Object-Oriented Languages

André T.H. Pang’? and Manuel M.T. Chakravarty'-3

! University of New South Wales
School of Computer Science & Engineering
Sydney, Australia
{andrep, chak}@cse.unsw.edu. au
2 CSIRO, Information & Communication Technologies
3 National ICT Australia, ERTOS

Abstract. The interfacing of object-oriented languages with functional
languages, in general, and with Haskell, in particular, has received a
considerable amount of attention. Previous work, including Lambada, a
Haskell to Java bridge, showed how an object-oriented class hierarchy
can be modeled using Haskell type classes, such that Java libraries can
be used conveniently from Haskell.

The present paper extends this previous work in two major directions.
Firstly, we describe a new implementation of object-oriented style method
calls and overloading in Haskell, using multi-parameter type classes and
functional dependencies. This enables calling of a foreign object’s meth-
ods in a syntactically convenient, type-safe manner. Secondly, we sketch
an approach to automating the generation of library bindings using
compile-time meta-programming for object-oriented frameworks featur-
ing reflection. We have evaluated the practicality of our approach by
implementing a Haskell binding to the Objective-C language on the Mac
OS X platform.

1 Introduction

The usability of programming languages is dependent on the ability to inter-
operate with existing software infrastructures: modern application development
requires access to libraries which enable operating system functionality, graph-
ical user interfaces, and access to component frameworks. Conversely, we want
to extend those existing libraries using code written in advanced high-level lan-
guages. All this leads to two main challenges: (1) foreign language structures need
to be modeled and (2) interface code that enables access to existing libraries and
components needs to be written. The former is difficult due to the mismatch of
data abstractions and type systems between languages, whereas the latter is a
practical challenge due to the plain size of modern software infrastructures.
This paper contributes to the interoperation of statically typed functional
programming languages — in particular, Haskell — with infrastructure software
developed for object-oriented languages. Our motivation for such interoperability

P. Trinder, G. Michaelson, and R. Pefnia (Eds.): IFL 2003, LNCS 3145, pp. 20-35, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Interfacing Haskell with Object-Oriented Languages 21

is to access and re-use existing object-oriented frameworks, such as the Cocoa
framework of Mac OS X. Using Cocoa, we can implement a program in the
Objective-C language to dump the contents of a document referred to by a URL
to standard output as follows:
int main (int argc, char x*argv) {
NSURL #url = [NSURL urlWithString:
[NSString stringWithCString:argv[1]]];
NSString *urlData = [NSString stringWithContentsOfURL:url];
fputs ([urlData cStringl);}

The conciseness of the code hinges on the comprehensive infrastructure provided
by Cocoa. Haskell cannot match the simplicity of the above program if we have to
re-implement the infrastructure — i.e., the function stringWithContentsOfURL:
of the class NSString. Hence, we would like to use such classes from Haskell as
elegantly and conveniently as using them from the framework’s native object-
oriented language. For the above URL fetcher code, we would like to write:
main = do

(arg:_) <« System.getArgs

url < _NSURL_ # urlWithString arg

urlData <+ _NSString_ # stringWithContentsOfURL url

putStr urlData

Interfacing Haskell with object-oriented languages presents a number of prob-
lems, one of which is the mismatch between the respective type systems. In par-
ticular, Haskell lacks a defining feature of such languages: it does not have class
inheritance (subtyping). Some object-oriented systems (e.g. Java, Smalltalk,
Objective-C) also use class objects, which act as objects that are concretised
representations of the class. This mapping from OO classes to Haskell types
must also ensure that type-safe method invocation on those objects can be per-
formed — preferably with a simple syntax — and also ensure that it is possible to
model the external API automatically via an interface generator.

1.1 Our Approach

In this paper, we advocate the use of multi-parameter type classes [1] to enable
syntactically convenient upcasting and downcasting of objects between types,
and present a generic approach to representing class objects in Haskell. We
show that multi-parameter type classes in combination with functional depen-
dencies [2] can provide full object-oriented style overloading in Haskell, enabling
interaction with object-oriented APIs as fluidly as one would expect from the
APT’s native language. Moreover, we use recent advances in compile-time meta-
programming — and specifically Template Haskell [3] — to provide direct access
to existing component software whose interfaces can be enquired via reflection,
and hence avoid the need for extra tool support, including the configuration and
maintenance problems associated with it.

22 André T.H. Pang and Manuel M.T. Chakravarty

In summary, the main contributions of the present paper are the following:

1. type-safe and syntactically convenient upcasting and downcasting (Sect 2.2),

. an encoding of class objects (Sect 2.4),

3. amnovel encoding of object-oriented method overloading into multi-parameter
type classes (Sect 3),

4. the automated generation of library bindings by way of compile-time meta-
programming for frameworks featuring reflection (Sect 4), and

5. an outline of a Haskell binding to Objective-C, in general, and the Cocoa
framework of Mac OS X, in particular (Sect 5).

[\]

Throughout the paper, we will summarise methods used in the work on Lam-
bada [4] as well as Shields & Peyton Jones’s work on object-oriented style over-
loading [5], as this forms the basis for our work. We will clearly state where our
approach moves beyond this previous work.

1.2 Related Work

Previous work, in particular that which has culminated in Lambada [4,6-8], has
modeled aspects of object-oriented class hierarchies and overloading in Haskell.
Lambada concentrates on Java as the foreign language and uses tuples and type
classes to pass an arbitrary number of method arguments from Haskell and
to invoke Java methods with varying return types. Moreover, it encodes class
inheritance via phantom types and type classes. Lambada is based on the in-
terface generator H/Direct [9] and is the basis for Haskell-Java bridges such as
GCJNI [10] and the Haskell/Java VM Bridge [11]. However, the Haskell API
presented in Lambada does not provide the same elegance nor convenience as
the framework language. Our aim is to close that gap further.

Shields and Peyton Jones [5] extend the approach of Lambada where type
classes encode object-oriented class hierarchies. They provide object-oriented
style method overloading by introducing several non-trivial extensions of the
type system. In contrast, we confine ourselves to multi-parameter type classes
with functional dependencies — a Haskell extension already implemented by Hugs
and the Glasgow Haskell Compiler.

Haskell interface generators such as GreenCard [12], C—Haskell [13], and
hsc2hs [14] partially automate the development of Haskell bindings to external
libraries. These tools are pre-processors which are separate from the compilation
process, whereas we concentrate on using compile-time meta-programming facil-
ities such as Template Haskell to provide such functionality. Alastair Reid [15]
has also recently taken a similar approach, re-implementing GreenCard as Tem-
plate GreenCard using compile-time meta-programming. Reid’s and our work
has been done concurrently and independently.

2 Modeling an Object-Oriented Class Hierarchy

With regard to the mismatch between the data structures of the two interoper-
ating languages, the main challenge is the lack of subtyping — class inheritance —

Interfacing Haskell with Object-Oriented Languages 23

in Haskell. Hence, we need a scheme to encode subtyping with Haskell’s existing
features, such that we can handle (1) multiple inheritance and interfaces, (2) up
and down casts, and (3) class objects. Moreover, the encoding should enable to
accurately type check code which uses objects or invokes methods on objects.
Previous research has shown how to model multiple inheritance in Haskell, which
we will summarise in the next subsection as it forms the basis for the discus-
sion of casts, class objects, and object representations in the remainder of this
section.

2.1 Class Hierarchy Encoding Techniques

Many previous approaches use phantom types to model inheritance [4,6-8], which
we mention here for completeness. The idea here is to have both a data type
and a type synonym for each class, where the data type has an unused — i.e., a
phantom — type parameter. Then, chains of nested types represent inheritance
chains, as is done in the following example where a Coffee class inherits from a
Drink class:

data DrinkT a = DrinkT; type Drink a = DrinkT a

data CoffeeT a = CoffeeT; type Coffee a = Drink (CoffeeT a)
Here, the type Drink () stands for an instance of the Drink class and Drink a
stands for any instances of Drink or any instances of its subclasses. The main
shortcomings of this approach are obscure type errors when inheritance is used
extensively and the inability to encode multiple inheritance. Thus, we reject
phantom types for our purposes.

Instead, we advocate the use of type classes to encode multiple inheritance,
similar to how Lambada encodes Java interfaces in Haskell and to the approaches
outlined by Shields and Peyton Jones [5]. In this scheme, we have one data type
and one type class per encoded OO class. The type class associated with an OO
class X, which we name SubX below, has an instance for each subclass of that
OO class. This is illustrated in the following example, where a class D inherits
from two classes B and C, and B and C both inherit from a class A:

data A; class SubA a; instance SubA A

data B; class SubB a; instance SubA B; instance SubB B
data C; class SubC a; instance SubA C; instance SubC C
data D; class SubD a; instance SubA D; instance SubB D

instance SubC D; instance SubD D
Multiple inheritance presents no challenge with this encoding. In fact, the encod-
ing is appropriate when instances of B and C each inherit from separate instances
of A (e.g., non-virtual multiple inheritance in C++) as well as if they inherit
from the same instance of A (e.g., as is done in Java, or using the virtual key-
word in C++). In both cases, the base class A is still of the same type, even if
there are multiple instances of A, one for B and one for C.

2.2 Upcasting and Downcasting Objects

Two central operations in a class hierarchy are upcasts and downcasts, where
the object of a class is used as the object of a superclass or specialised to a

24 André T.H. Pang and Manuel M.T. Chakravarty

subclasses, respectively. Such casting (or coercing) operations define a binary
relation between two types, which is why we will use a two-parameter type
class to model that relationship and the corresponding operations in Haskell.
This is preferable to an encoding based on single-parameter classes where the
second class is part of the function name. For example, Haskell 98 defines the
fromInteger and toInteger functions, which coerce between values of Integer
and other numerals. This approach is reasonable for the base language Haskell
98, as it only supports single-parameter type classes. However, it is problematic
when modeling object hierarchies as it is less generic and leads to a much larger
number of classes. Consequently, we introduce the two-parameter class Cast and
instantiate it as follows for the earlier Drink example:
class Cast sub super where
upcast :: sub — super; downcast :: super — sub
instance Cast Coffee Drink where
upcast Coffee = Drink; downcast Drink = Coffee

upcastingUsage = upcast Coffee :: Drimk
downcastingUsage = downcast Drink :: Coffee
Languages, such as Objective-C, check the validity of casts at runtime. Hence,

the above upcast and downcast functions need to implement a similar check
that verifies the validity of a cast in a given object hierarchy. We realise this
by calling a function provided by the object-oriented language, via the FFI. An
appropriate action — such as throwing a Haskell exception — can be taken if the
cast fails.

2.3 Representing References to Objects in Haskell

Most object-oriented languages use memory references or pointers as an abstract
object representation. On the Haskell side, it is easy to use type synonyms such
as type Drink = Ptr () and type Coffee = Ptr (), and hence, use void (un-
typed) pointers to represent objects. However, this approach prevents the type
system from distinguishing between different objects. To improve this situation,
we use recursive newtype declarations, such as newtype Coffee = Coffee (Ptr
Coffee). As aresult, pointers to objects are typed; we can then use different type
class instances for different objects (which is not possible with type synonyms).

2.4 Class Objects

In some languages — e.g., Java, Smalltalk, Objective-C — defining a class has a
dual purpose: it creates a new type with the name of that class and it also creates
an instantiated object known as a class object. Class objects are concrete objects
that represent the class: they store details such as method implementations, the
name of the class, and which superclasses they inherit from.

In Haskell, we propose to make class objects accessible via a toplevel func-
tion getClassObj that obtains an abstract handle to the class object from the

Interfacing Haskell with Object-Oriented Languages 25

foreign language. We statically distinguish class objects from the standard in-
stance objects by extending the class hierarchy on the Haskell side to include
two separate inheritance trees: one tree for instance objects and another one for
class objects. Two new data types — InstanceObj and ClassObj — act as the
roots of the two trees, respectively. Listing 1.1 shows the setup for the Drink
example, which we already used earlier. By convention, we use function names
following the scheme classname to denote class objects.

Carrying the idea of class objects even further, some languages also have
metaclass objects, which serve as class objects of class objects. We encode them
in Haskell by a third inheritance tree, the MetaclassObj inheritance tree, and
by extending the naming scheme of class objects to classname for metaclass
objects.

3 Method Invocation on Objects

Given a design for modeling an object-oriented class hierarchy, we now address
the question of how to invoke methods on those objects. This is non-trivial, as we
wish to arrive at an invocation interface that is as concise and simple as method
invocation from the object framework’s native language. At the same time, we
need to retain object-oriented style overloading, polymorphism, and also Haskell
features, such as strong typing and type inference.

3.1 Message Expressions: The Low-Level Interface

A method invocation anObject.aMethod (argumentl, argument2, ...) con-
tains several entities. We call the name of the method along with its arguments
— i.e., aMethod(argumentl, argument2, ...) — a message. Moreover, we call
the object or component receiving the message, i.e. anObject, the receiver of
the message. Finally, we call a particular instance of a message together with
its receiver, i.e. a concrete representation of a method invocation, a message ez-
pression. Thus, to send a message, it needs to be paired with a receiver to give
a message erpression.

On the lowest level, Haskell code interacts with other languages by using the
standard Foreign Function Interface (FFI) [16]. The FFI, although conceptually
more general, is currently only defined for interaction with C code. Bindings to
object-oriented or component systems could in principle be achieved by extend-
ing the FFI to cover a wider range of calling conventions. However, this is an
involved endeavour; so, given the current standard, it is more attractive to make
use of the existing interface to C and to use it as a prozy language, or bridge, to
enable Haskell code to communicate with the object-oriented system. We take
this route and leave the exact representation of message expressions to the bridge,
which gives us more flexibility in how such expressions can be represented, and
also allows us to take advantage of existing language bindings from our target
language to C. On the Haskell side, we provide a low-level Haskell API, outlined
in Figure 1.2, to access C functions that manipulate message expressions as an
abstract data type, shown in this example as simple C pointers.

26 André T.H. Pang and Manuel M.T. Chakravarty

Listing 1.1. Modeling a class hierarchy which includes class objects

class 0bj o

-- the root of all objects (both class and non-class objects)
newtype AnyObj = AnyObj (Ptr AnyObj)

instance 0Obj AnyObj

class Obj i = Instance i

-- the root of all instance (non-class) objects
newtype InstanceObj = InstanceObj (Ptr InstanceObj)
instance 0Obj Instance(Obj; instance Instance Instance(Obj

class Instance s = SubDrink s
newtype Drink = Drink (Ptr Drink)
instance Obj Drink; instance Instance; instance SubCoffee Drink

class Instance s = SubCoffee s

newtype Coffee = Coffee (Ptr Coffee)

instance 0Obj Coffee; instance Instance Coffee; instance SubDrink
Coffee; instance SubCoffee Coffee

-- the inheritance tree for class objects (the "class of classes”)
class Obj ¢ = Class c where
-- Given the name of a class, returns its class object
getClassObjFromName :: String — c
-- Given a class object, returns its name
classObjName :: ¢ — String

-- the root of all class objects
newtype ClassObj = ClassObj (Ptr ClassObj)
instance 0Obj ClassObj; instance Class ClassObj

class Class s = DrinkClass s

newtype DrinkClassObj = DrinkClassObj (Ptr DrinkClassObj)
instance 0Obj DrinkClassObj

instance Class DrinkClassObj where { ... }

instance DrinkClass DrinkClass(Obj

class Class s = CoffeeClass s

newtype CoffeeClassObj = CoffeeClassObj (Ptr CoffeeClassObj)

instance 0Obj CoffeeClassObj; instance Class CoffeeClassObj; instance
DrinkClass CoffeeClassObj; instance CoffeeClass CoffeeClass0bj

getClassObj :: Class ¢ = ¢
getClassObj =
let x = upcast (getClassObjectFromName (classObjectName x)) in x

-- usage:
Coffee = getClassObj :: CoffeeClassObj
Drink = getClassObj :: DrinkClassObj

Interfacing Haskell with Object-Oriented Languages

Listing 1.2. Low-Level Messaging Interface

newtype AnyObj = AnyObj (Ptr Any0Obj); type Receiver = Any0Obj
newtype MsgExpr = MsgExpr (Ptr MsgExpr)

foreign import ccall makeMsgExpr :: I0 MsgExpr

foreign import ccall setReceiver :: MsgExpr — Receiver — IO ()

foreign import ccall setMethodName :: MsgExpr — CString — I0 ()
-- assuming that the method name to invoke is a C string

foreign import ccall setCIntArg :: MsgExpr — Int — CInt — I0 ()

-- the ‘Int’ arg specifies which index in the argument list to set
foreign import ccall setCCharArg :: MsgExpr — Int — CChar — I0 (O
-- (repeat for the rest of the C basic foreign types) ...

-- send a message expression to its designated receiver

foreign import ccall sendMsgExprWithNoReply :: MsgExpr — I0 ()
foreign import ccall sendMsgExprWithIntReply :: MsgExpr — I0 Int
-- (repeat for the rest of the C bastic foreign types) ...

3.2 A Higher-Level Message Sending Interface

27

On top of this low-level messaging API, we build a more convenient high-level
API in two steps. We will take the first step in this subsection where we construct
a generic sendMsg function, which can send a message with an arbitrary number
of arguments to an arbitrary receiver. The construction of the generic sendMsg
function is rather similar to the approach take in Lambada [4], but it is necessary
to summarise them here since we will build on them later, in our contribution
of the direct messaging interface. Let us turn to the generic messaging function
first, which we would like to use as illustrated in the following three example

invocations:
sendMsg receiver "methodName" (argl, arg2, arg3) -- :: IO ()
sendMsg receiver’ "anotherMethod" argl -- I0 ()

-- sendMsg may also return a value:
num < sendMsg receiver’’ "yetAnotherMethod" (argl, arg2) -- I0 Int

Setting the Message Arguments. We use type classes to unify the various
set TypeArg functions from Section 3.1 into a single, overloaded setArg function:

class Storable a = Arg a where

setArg :: MsgExpr — Int — a — I0 ()
instance Arg CInt where setArg = setCIntArg
instance Arg CString where setArg = setCStringArg
-- etc ...

Sending Variable Arguments in a Message. As Haskell does not directly
support for functions with a variable number of parameters, we use tuples to

avoid the need for a whole family of sendMsg functions.

28 André T.H. Pang and Manuel M.T. Chakravarty

class Args args where
setArgs :: MsgExpr — args — I0 (); setArgs = setArg 1
instance Args Char where setArgs = setArg 1
instance Args Int where setArgs = setArg 1
instance Args CString where setArgs = setArg 1

instance (Arg a, Arg b) = Args (a, b) where
setArgs expr (a, b) = do { setArg 1 expr a; setArg 2 expr b; }
instance (Arg a, Arg b, Arg c) = Args (a, b, c) where
setArgs expr (a, b, c) = do { setArg 1 expr a; setArg 2 expr b;
setArg 3 expr c; } -- (repeat for n-sized tuples)
It is also possible to use a list containing existential data types (an extension
of Haskell 98 supported by many Haskell compilers) instead of a tuple, but the
syntax to use such an existential list in practice is far more unwieldy.

Overloading the Message Reply Type. Just as we use type classes to unify
the various set TypeArg functions into a single setArg function, we proceed to
similarly obtain a function sendMsgExpr that can receive replies of varying type.
We simply invoke the appropriate sendMsgExprWithTypeReply function:

class MsgReply r where sendMsgExpr :: MsgExpr — I0 r

instance MsgReply () where sendMsgExpr = sendMsgExprWithNoReply

instance MsgReply Int where sendMsgExpr = sendMsgExprWithIntReply

instance MsgReply Float where sendMsgExpr = sendMsgExprWithFloatReply

-- etc ...

Implementing sendMsg. We implement sendMsg by combining the components
discussed in this subsection. Thanks to liberal use of ad-hoc polymorphism via
type classes, its implementation is (perhaps surprisingly) short and straightfor-
ward — especially considering how many lines of code this polymorphism saves
us from writing when compared to directly using the low-level API to send mes-
sages:
sendMsg :: (Args args, MsgReply r)
= Receiver — MethodName — args — IO r
sendMsg receiver methodName args = do
e < makeMsgExpr; setReceiver e receiver; setMethodName e methodName
setArgs e args; r <« sendMsgExpr e; return r

3.3 Direct Messaging: Statically Type-Checked Message Sending

Unfortunately, while the definition of sendMsg enables any type of message with
an arbitrary reply type to be sent to any receiving object, it also has the un-
pleasant side-effect that whenever the sendMsg function is called, the type system
must be told explicitly what the reply type will be (i.e. the resulting type vari-
able must be fized), otherwise the type of sendMsg will be indeterminate. The
receiving object and any objects in the argument list must also be upcast to the

Interfacing Haskell with Object-Oriented Languages 29

Any0bj type, and if the message reply is an object, an explicit downcast must
be performed on the reply type from Any0bj to its correct type. Thus, using
sendMsg, the Haskell version of the simple Java statements aHashtable.put(
aKey, aValue); v = aHashtable.get(aKey) is rather unattractive:

sendMsg (upcast aHashtable :: AnyObj) "put" (upcast aKey :: AnyObj,
upcast aValue :: AnyObj) :: I0 ()
valueAnyObj <« sendMsg (upcast aHashtable :: AnyObj) "get" (upcast
aKey :: AnyObj) :: IO AnyObj
let v = downcast valueAnyObj :: I0 SomeValue
It is clear that the Haskell version does not meet the two goals of allowing
elegant and convenient communication with object-oriented frameworks. Ideally,
the Haskell code to perform message sending should be as succinct as possible:
put aHashtable (aKey, aValue); v <- get aHashtable aKey. This is how
one would expect to use those functions if they were implemented in a native
Haskell Hashtable module. The goal is therefore to have functions which auto-
matically perform any typecasting and type fixing necessary to send a message,
so that the programmer does not have to explicitly perform those tasks. To im-
plement these functions, the dynamic sendMsg function can have its dynamism
constrained by wrapper functions such as put and get, when there is knowledge
of all the message expression’s types at compile-time. Let us call these static
wrapper functions direct messaging functions.

Automatically Upcasting Objects in the Argument List. We avoid ex-
plicit upcasts for objects sent via an argument list by making the relevant object
data type (e.g. HashtableObj) an instance of the Arg type class. By making the
Obj type class inherit from the Arg type class and implementing a default method
in Obj named setObjArg, it is possible to do this generically for all objects:
class Arg arg = 0bj arg where
setObjArg :: Int — MsgExpr — arg — I0 O
setObjArg idx exp arg = setAnyObjArg idx exp (upcast arg :: AnyObj)
instance 0Obj AnObj; instance Arg AnObj where setArg = setObjArg

Implementing Object-Oriented Style Overloading. In an object-oriented
language, each class has a separate name space for method names. Moreover, it
is possible to have two classes Foo and Bar, which both contain a method named
m — and not only can m be overloaded within the class so that it can be called
with different types of arguments, but the two classes may contain completely
different return types for m:

class Foo { int m (float f, char ¢) { ... }; int m (int i) { ... } }

class Bar { void m (Object o) { ... }; voidm O { ... } }

Since Haskell does not have namespace separation between objects, a method
invocation of m on an instance of Foo or Bar would be written asm Foo (3.14,
’a’) orm Bar anObj instead. We can implement such a function m by wrapping
sendMsg in the following manner:

30 André T.H. Pang and Manuel M.T. Chakravarty

m :: (Obj receiver, Args args, MsgReply reply) =
receiver — args — reply
m receiver args reply = sendMsg receiver "m" args
data Foo = Foo; data Bar = Bar —- some ADT class instances
usage = do -- note that we must still fix the return type of m

i < m Foo (3.14, ’c’) :: I0 Int; i’ « m Foo (69 :: Int) :: IO Int

m Bar anObj :: I0 (); m Bar () :: I0 ()

We can implement the hashtable functions put and get similarly to m. How-
ever, then, put and get will inherit the problem of requiring explicit type anno-
tations from sendMsg. What is required is a way to constrain the type variables
which put and get can operate on. We do so by using a multi-parameter type
class: one parameter is used for each type variable that needs to be constrained.
The functions put, get, and any other method invocation have three parame-
ters which need to be constrained: (1) the receiving object, (2) the types of the
argument list, and (3) the reply type. Additionally, the type system must be
told that the reply type is uniquely determined by the receiving object and the
argument list; otherwise, the result type will not be properly fized by usage of
the put and get functions. We specify this type dependency using functional
dependencies. Now we have all the ingredients for implementing put and get:

class (Obj receiver, Args args, MsgReply reply) =

Put receiver args reply | receiver args — reply

put :: (Put receiver args reply) = receiver — args — reply
put = sendMsg (upcast receiver :: AnyObj) "put" args

class (Obj receiver, Args args, MsgReply reply) =

Get receiver args reply | receiver args — reply
get :: (Get receiver args reply) = receiver — args — reply
get = sendMsg (upcast receiver :: AnyObj) "get" args

-- specifying which types can be used with put and get
instance Put HashtableObj (AnyObj, AnyObj) O

instance Get HashtableObj AnyObj AnyObj

instance Put FiniteMapObj (AnyObj, AnyObj) ()

instance Get FiniteMapObj AnyObj AnyObj

The DirectMsg Type Class. The above Put and Get type classes share many
similarities: the only difference between them is that Put is used to constrain the
type variables of the put function, and Get constrains the type variables of the
get function. We can eliminate these per method type classes by introducing
a DirectMsg type class which, as a new argument, gets the method name as
a phantom parameter, and declare a unique method data type for each method
name. FEach instance of DirectMsg uses the method data type in its instance
declaration, and each direct messaging function fizes the phantom parameter
using the method data type, as in this example:
class (Obj rcvr, Args args, MsgReply reply) =
DirectMsg rcvr methodName args reply | rcvr methodName args — reply

Interfacing Haskell with Object-Oriented Languages 31

data Method_put; data Method_get

put :: (DirectMsg rcvr Method_put args reply) = rcvr — args — reply
put receiver args = sendMsg (upcast receiver :: AnyObj) "put" args

get :: (DirectMsg rcvr Method_get args reply) = rcvr — args — reply
get receiver args = sendMsg (upcast receiver :: AnyObj) "get" args

-- specifying which types can be used with put and get

instance DirectMsg HashtableObj MethodName_put (AnyObj, AnyObj) (O
instance DirectMsg HashtableObj MethodName_get (AnyObj) AnyObj
instance DirectMsg FiniteMapObj MethodName_put (AnyObj, AnyObj) ()
instance DirectMsg FiniteMapObj MethodName_get (AnyObj) Any0Obj

This design using a single DirectMsg type class for all methods is sufficiently
lightweight to be used with thousands of direct messaging functions. More-
over, it is easy to generate all the required declarations automatically. For lan-
guages which feature multiple inheritance and require disambiguation at the
call site of the method invocation to determine which method to invoke, multi-
ple Haskell method invocation functions can be provided, possibly with a sim-
ple name mangling scheme, e.g. the two C++ methods foo.parentl: :bar()
and foo.parent2::bar() can be translated to Haskell as foo parentl and
foo parent2.

3.4 Transparent Marshaling

The Arg and MsgReply type classes can also perform transparent marshaling. For
example, the following code demonstrates how the Haskell String type can be
transparently marshaled to and from a foreign StringQObj type before a message
is sent or a message reply is retrieved:
instance Arg String where setArg expr index arg = do
cString <« newCString arg; stringObj < new _StringObj_ cString
setArg expr index string0bj
instance MsgReply String where sendMsgExpr rcvr methodName args = do
o <« sendMsgExprWithAnyObjReply rcvr methodName args
let stringObj = downcast o :: StringQbj
cString <« getCString stringObj; peekCString cString

3.5 Monadic Binding and Object-Oriented Syntax

For clarity, the sendMsg function has been used so far with the receiving object
as the first parameter in the argument list. However, we get a more natural
notation if we place the receiving object last in the argument list, because then
it is possible to create a function (#) as follows:
(#) :: obj — (obj — reply) — reply; obj # method = method obj

It allows us to write object # method rather than method object. This more
closely resembles object-oriented notation. We can also use the monadic bind
operator (>3>=) to build message chains, where the result of a method invocation
is used as the receiver of the next method invocation. For example, equivalent to

32 André T.H. Pang and Manuel M.T. Chakravarty

foo.bar(a).baz(b) in Java or [[foo bar:a] baz:b] in Objective-C, we can
write foo # bar a >»= baz b in Haskell.

4 Meta-programming an Interface Generator

The majority of Haskell language binding tools are implemented as pre-processors
that generate a Haskell version of the desired component system’s API functions:
such tools are called interface generators. The Glorious Glasgow Haskell Com-
piler recently introduced facilities for compile-time meta-programming, called
Template Haskell, that provide an alternative to interface generators imple-
mented as pre-processors. Compile-time meta-programming restricts meta-pro-
gramming — i.e., program generation — to compile time, which means that in-
terface generation can be folded into the compilation process of the interface
and possibly its client; thus, the interface generator becomes a meta-program.
In Template Haskell, a meta-program is standard Haskell code that can inspect,
modify, and generate other Haskell code translated in the some compilation run.
In other words, we can program the Haskell compiler itself to take the role
of an interface generator (such as H/Direct, GreenCard, or C—Haskell). Instead
of generating text files, such an interface generator produces an internal repre-
sentation of the generated Haskell code, which is, then, immediately translated
to object code. If such a meta-programming-based interface generator can au-
tomatically find the interfaces presented by the target API, then the task of
mapping a component system’s API in Haskell can be completely automated
at compile-time, and all that is required from the programmer are a few extra
lines of code to splice in the instructions to the meta-program implementing the
interface generator. Finding the target API can happen in either of two ways:

1. If the API is available in the form of a machine readable interface files, the
meta-program can analyse these interface files and synthesise a matching
Haskell API together with the required marshaling code.

2. If the API can be queried using the reflective capabilities of the target frame-
work, the meta-program can use the FFI to retrieve the API at compile time.

The later method, i.e. the use of reflection, is attractive as it removes any scope
for a mismatch between the API version used for interface generation and that
used on execution of the interface. However, it at the same time also complicates
cross-compilation.

Interface Files. To illustrate the use of interface files for binding generation
with meta-programming, let us consider the case of generating bindings to C
libraries using Template Haskell [3]. In this case, the Haskell meta-program needs
to read the C header files of the library, which Template Haskell supports via
I/0O actions in the quotation monad. This monad, called Q, is a state transformer
realised as an extension of the standard Haskell I0 monad. Hence, standard I0
routines can be lifted into the quotation monad. In this setting, the following
skeleton outlines the generation of FFI import declarations from a C header file:

Interfacing Haskell with Object-Oriented Languages 33

importC :: FilePath — Q Dec

importC headerFile = do
-- generate an abstract syntaxz tree from the C header file
headerAST <« parseC headerFile
-— make "foreign wmport"” declarations from C function prototypes
foreignImportDecls <« cPrototypesToHaskellDecls headerAST
return foreignImportDecls

In practice, we need additional code to generate marshaling code, in addition
to the FFI declarations. In any case, a function, such as importC, might then
be used by way of a Template Haskell toplevel splice, which glues the generated
code into the currently compiled program, such as $(importC "<math.h>") to
provide access to a C library.

Reflection. To illustrate the use of reflection for the same task, we shall con-
sider the case of interfacing to Objective-C, which is what we do for the Mocha
binding described in Section 5. In this case, the meta-program needs access to the
targeted object-oriented framework itself, while generating the required Haskell
API and marshaling code. This access requires the interoperation of Haskell with
the target language (in our case, with Objective-C), and hence, requires the use
of the FFI. In Haskell, this will usually require I0 operations, which are realised
via the quotation monad, just as in the case of accessing interface files. As an
example, consider the following;:
—-— the root of all class objects (as in Listing 1.1)
newtype ClassObj = ClassObj (Ptr ClassObj)
-- C prozy language function to retrieve ObjC classes via reflection
foreign import lookupObjCClasses :: I0 [0bjCClass]
-- declares a Haskell API from an 0bjC class (e.g. with marshaling
-- code and direct messaging functions)
declareHaskellAPIForObjCClass :: 0ObjCClass — Q Exp
import0bjCClasses :: Q Exp
import0bjCClasses = do
classes <« lookupObjCClasses
haskellAPIDeclarations < map declareHaskellAPIForObjCClass classes
sequence haskellAPIDeclarations

One can then splice in the Haskell API declarations for the Objective-C classes
by writing $ (import0ObjCClasses).

5 Mocha: A Haskell to Objective-C Binding

We implemented the methods described in this paper to realise a language bind-
ing between Haskell and Objective-C, which we named Mocha. Objective-C is
used extensively in the Mac OS X, NeXTStep and GNUstep environments, and
features two object frameworks — Foundation and AppKit — which together facil-
itate rapid software development. Cocoa is the name that Apple® has given to
the combination of the Foundation and AppKit frameworks in association with
several more Objective-C classes specific to the Mac OS X platform.

34 André T.H. Pang and Manuel M.T. Chakravarty

Modeling Cocoa Classes. To model the class hierarchy, Mocha generates four
class hierarchy trees for the Haskell programmer: one to represent instance ob-
jects, one for class objects, one for meta-class objects, and one for Objective-C’s
formal protocol objects' — this follows the method described in Section 2. Ex-
plicit upcasting and downcasting of objects is provided, so that objects retrieved
from Cocoa container objects (such as NSArray or NSDictionary) can be cast
appropriately — following Section 2.2.

Interface definitions are provided for the entire Cocoa framework, and on-the-
fly interface generation is provided via Template Haskell, so that user-written
Objective-C frameworks can easily be used when writing a Haskell program.
(The Template Haskell-based interface generator was also used to generate the
interface definitions for Cocoa.)

Communication with Objective-C. Mocha enables Haskell to send mes-
sages to Objective-C objects and also facilitates Objective-C objects written
in Haskell. Message sending from Haskell to Objective-C is based on the tech-
niques described in Section 3, with the exception that an additional type class
has been used in Mocha to integrate Objective-C’s type encodings scheme with
the messaging functions.

The abstract MsgExpr data type is implemented in Mocha using Cocoa’s
NSInvocation class, which exactly fulfills the properties required of a MsgExpr.
Mocha implements transparent marshaling between many analogous data types,
such as a Haskell Strings and the Cocoa framework’s NSString class, and pro-
vides direct messaging functions for the entire Cocoa framework.

Mocha uses surrogate objects to forward messages from the Objective-C en-
vironment to the Haskell environment, and these surrogate objects are capable
of masquerading as any type of object in Objective-C. As a result, it is possible
for the Haskell environment to respond to actions produced by a user in a GUI
interface, or even for Haskell code to function as a fully-fledged NSDocument or
NSWindow controller.

Building Cocoa Applications. The Haskell URL fetcher introduced in Sec-
tion 1 of this paper is a complete, working program and is one of the examples
included with Mocha. Mocha can be used to build complete GUI applications
on Mac OS X that are written purely in Haskell, using the Cocoa framework.
Mocha is currently only implemented on the Mac OS X platform, but it should
be possible to port it to other Objective-C systems such as GNUstep without
much difficulty.

The homepage for Mocha is at http://www.algorithm.com.au/mocha/. In
accordance with the Haskell and Apple open-source developer and research com-
munities, it has been provided under the liberal BSD license.

LA formal protocol is similar to a Java interface or a C++ pure virtual class. Formal
protocols enable objects to inherit multiple interface definitions, but not inherit
multiple implementation definitions.

Interfacing Haskell with Object-Oriented Languages 35

Acknowledgments

We are grateful to Wolfgang Thaller for the many technical discussions about the
topics discussed in this paper and the inspiration provided by his HOC binding.
Moreover, we thank Roman Leshchinskiy for his helpful feedback on an earlier
version of the paper.

References

10.
11.

12.

13.

14.

15.

16.

. Simon Peyton Jones, M.J., Meijer, E.: Type classes: exploring the design space.

In: Haskell Workshop. (1997)

Jones, M.P.: Type classes with functional dependencies. In: Proceedings of the 9th
European Symposium on Programming (ESOP 2000). Number 1782 in Lecture
Notes in Computer Science, Springer-Verlag (2000)

Sheard, T., Peyton Jones, S.: Template meta-programming for haskell. In: Pro-
ceedings of the Haskell Workshop. (2002)

Meijer, E., Finne, S.: Lambada: Haskell as a better Java. In: Electronic Notes in
Theoretical Computer Science 41 No. 1. (2001)

Shields, M., Peyton Jones, S.: Object-oriented style overloading for Haskell.
In: First Workshop on Multi-language Inferastructure and Interoperability (BA-
BEL’01), Firenze, Italy. (2001)

. Leijen, D., Meijer, E., Hook, J.: Haskell as an automation controller. In: Advanced

Functional Programming. (1998) 268-289

Finne, S., Leijen, D., Meijer, E., Jones, S.P.: Calling hell from heaven and heaven
from hell. In: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, ACM Press (1999)

. Peyton Jones, S., Meijer, E., Leijen, D.: Scripting COM components in Haskell.

In: Proceedings of the Fifth International Conference on Software Reuse, IEEE
Computer Society (1998)

Finne, S., Leijen, D., Meijer, E., Peyton Jones, S.L.: H/Direct: A binary foreign
language interface for Haskell. In: Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP’98), ACM Press (1998) 153-162
Courtney, A.: GCJINI (2002) http://haskell.cs.yale.edu/gcjni/.

Yakeley, A.: Haskell/Java VM Bridge (2003)
http://sourceforge.net/projects/jvm-bridge/.

Nordin, T., Peyton Jones, S.L., Reid, A.: Green Card: a foreign-language interface
for Haskell. In: Proceedings of the Haskell Workshop. (1997)

Chakravarty, M.M.T.: C—Haskell, or yet another interfacing tool. In Koopman, P.,
ed.: Proceedings of Implementation of Functional Languages, 11th. International
Workshop (IFL’99). (1999)

The GHC Team: The Glasgow Haskell Compiler user’s guide: Writing Haskell
interfaces to C code: hsc2hs (2001)
http://www.haskell.org/ghc/docs/latest/html/users guide/hsc2hs.html.
Reid, A.: Template Greencard (draft) (2003) Presented at Implementation of Func-
tional Languages, 15th International Workshop (IFL’03).

The Haskell FFI Team: A primitive foreign function interface.
http://www.cse.unsw.edu.au/~chak/haskell/ffi/ (1998)

A Functional Shell
That Dynamically Combines Compiled Code

Arjen van Weelden* and Rinus Plasmeijer

Computer Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
{arjenw,rinus}@cs.kun.nl

Abstract. We present a new shell that provides the full basic function-
ality of a strongly typed lazy functional language, including overloading.
The shell can be used for manipulating files, applications, data and pro-
cesses at the command line. The shell does type checking and only exe-
cutes well-typed expressions. Files are typed, and applications are simply
files with a function type. The shell executes a command line by combin-
ing existing code of functions on disk. We use the hybrid static/dynamic
type system of Clean to do type checking/inference. Its dynamic linker
is used to store and retrieve any expression (both data and code) with
its type on disk. Our shell combines the advantages of interpreters (di-
rect response) and compilers (statically typed, fast code). Applications
(compiled functions) can be used, in a type safe way, in the shell, and
functions defined in the shell can be used by any compiled application.

1 Introduction

Programming languages, especially pure and lazy functional languages like Clean
[1] and Haskell [2], provide good support for abstraction (e.g. subroutines, over-
loading, polymorphic functions), composition (e.g. application, higher-order
functions, module systems), and verification (e.g. strong type checking and in-
ference).

In contrast, command line languages used by operating system shells usually
have little support for abstraction, composition, and especially verification. They
do not provide higher-order subroutines, complex data structures, type inference,
or even type checking at all before evaluation. Given their limited set of types
and their specific area of application, this has not been recognized as a serious
problem in the past.

We think that command line languages can benefit from some of the pro-
gramming language facilities, as this will increase their flexibility, reusability
and security. We have previously done research on reducing run-time errors (e.g.
memory access violations, type errors) in operating systems by implementing a
micro kernel in Clean that provides type safe communication of any value of any
type between functional processes, called Famke [3]. This has shown that (mod-
erate) use of dynamic typing [4], in combination with Clean’s dynamic run-time

* Part of this work was supported by InterNLnet.

P. Trinder, G. Michaelson, and R. Pena (Eds.): IFL 2003, LNCS 3145, pp. 36-52, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Functional Shell That Dynamically Combines Compiled Code 37

system and dynamic linker [5,6], enables processes to communicate any data
(and even code) of any type in a type safe way.

During the development of a shell/command line interface for our prototype
functional operating system it became clear that a normal shell cannot really
make use (at run-time) of the type information derived by the compiler (at
compile-time). To reduce the possibility of run-time errors during execution of
scripts or command lines, we need a shell that supports abstraction and verifi-
cation (i.e. type checking) in the same way as the Clean compiler does. In order
to do this, we need a better integration of compile-time (i.e. static typing) and
run-time (i.e. interactivity) concepts.

In this paper we present a shell for a functional language-based operating sys-
tem that combines the best of both worlds: the interactivity of an interpreter and
the efficiency and type safety of a compiler. This shell is used as the user inter-
face for Famke, the above mentioned kernel of a prototype functional operating
system in development. The shell can make use of compiled functions/programs,
without losing type information. Functions defined in the shell can also be used
by compiled applications.

The shell is built on top of Clean’s hybrid static/dynamic type system and
its dynamic I/O run-time support. It allows programmers to save any Clean ex-
pression, i.e. a graph that can contain data, references to functions, and closures,
to disk. Clean expressions can be written to disk as a dynamic, which contains
a representation of their (polymorphic) static type, while preserving sharing.
Clean programs can load dynamics from disk and use run-time type pattern
matching to reintegrate it into the statically typed program. In this way, new
functionality (e.g. plug-ins) can be added to a running program in a type safe
way.

The shell is called Esther (Extensible Shell with Type cHecking ExpeRi-
ment), and is capable of:

— reading an expression from the console, using Clean’s syntax for a basic,
but complete, functional language. It offers application, lambda abstraction,
recursive let, pattern matching, function definitions, and even overloading;

— using compiled Clean programs as typed functions at the command line;

— defining new functions, which can be used by other compiled Clean programs
(without using the shell or an interpreter);

— extracting type information (and indirectly, code) from dynamics on disk;

— type checking the expression, and solving overloading, before evaluation;

— constructing a new dynamic containing the correct type and code of the
expression.

First, we introduce the static/dynamic hybrid type system of Clean in Sect. 2.
Section 3 gives a global description of how Esther uses dynamics to type check
an expression. It also give examples of the use of dynamics. In Sect. 4 we show
how to construct a dynamic for each kind of subexpression such that it has the
correct semantics and type, and how to compose them in a type checked way.
Related work is discussed in Sect. 5 and we conclude and mention future research
in Sect. 6.

38 Arjen van Weelden and Rinus Plasmeijer

2 Dynamics in Clean

In addition to its static type system, Clean has recently been extended with
a (polymorphic) dynamic type system [4-6]. A dynamic in Clean is a value of
static type Dynamic, which contains an expression as well as a representation of
the (static) type of that expression. Dynamics can be formed (i.e. lifted from the
static to the dynamic type system) using the keyword dynamic in combination
with the value and an optional type. The compiler will infer the type if it is
omitted!.

dynamic 42 :: Int?

dynamic map fst :: A%.a b: [(a, B)] -> [a]

Function alternatives and case patterns can pattern match on values of type
Dynamic (i.e. bring them from the dynamic back into the static type system).
Such a pattern match consist of a value pattern and a type pattern. In the
example below, matchInt returns Just the value contained inside the dynamic
if it has type Int; and Nothing if it has any other type. The compiler translates
a pattern match on a type into run-time type unification. If the unification fails,
the next alternative is tried, as in a common (value) pattern match.

::* Maybe a = Nothing | Just a

matchInt :: Dynamic -> Maybe Int
matchInt (x :: Int) = Just x
matchlnt other = Nothing

A type pattern can contain type variables which, provided that run-time
unification is successful, are bound to the offered type. In the example below,
dynamicApply tests if the argument type of the function f inside its first argu-
ment can be unified with the type of the value x inside the second argument. If
this is the case then dynamicApply can safely apply £ to x. The type variables
a and b will be instantiated by the run-time unification. At compile time it is
generally unknown what type a and b will be, but if the type pattern match
succeeds, the compiler can safely apply £ to x. This yields a value with the type
that is bound to b by unification, which is wrapped in a dynamic.

5

dynamicApply :: Dynamic Dynamic -> Dynamic
dynamicApply (f :: a -> b) (x :: a) = dynamic f x :: bS
dynamicApply df dx = dynamic "Error: cannot apply"

Type variables in dynamic patterns can also relate to a type variable in the
static type of a function. Such functions are called type dependent functions [7].
A caret (7) behind a variable in a pattern associates it with the type variable with

! Types containing universally quantified variables are currently not inferred by the
compiler. We will not always write these types for ease of presentation.

2 Numerical denotations are not overloaded in Clean.

3 Clean’s syntax for Haskell’s forall.

4 Defines a new data type in Clean, Haskell uses the data keyword.

5 Clean separates argument types by whitespace, instead of ->.

5 The type b is also inferred by the compiler.

A Functional Shell That Dynamically Combines Compiled Code 39

the same name in the static type of the function. The static type variable then
becomes overloaded in the predefined TC (or type code) class. The TC class is used
to ‘carry’ the type representation. In the example below, the static type variable
t will be determined by the (static) context in which it is used, and will impose
a restriction on the actual type that is accepted at run-time by matchDynamic.
It yields Just the value inside the dynamic (if the dynamic contains a value of
the required context dependent type) or Nothing (if it does not).

matchDynamic :: Dynamic -> Maybe t | TC t7
matchDynamic (x :: t7) = Just x
matchDynamic other = Nothing

The dynamic run-time system of Clean supports writing dynamics to disk
and reading them back again, possibly in another program or during another
execution of the same program. The dynamic will be read in lazily after a suc-
cessful run-time unification (triggered by a pattern match on the dynamic). The
amount of data and code that the dynamic linker will link, is therefore deter-
mined by the amount of evaluation of the value inside the dynamic. Dynamics
written by a program can be safely read by any other program, providing a
simple form of persistence and some rudimentary means of communication.

writeDynamic :: String Dynamic *®World -> (Bool, #*World)
readDynamic :: String *World -> (Bool, Dynamic, *World)

Running progl and prog2 in the example below will write a function and a
value to dynamics on disk. Running prog3 will create a new dynamic on disk that
contains the result of ‘applying’ (using the dynamicApply function) the dynamic
with the name “function” to the dynamic with the name “value”. The closure
40 + 2 will not be evaluated until the * operator needs it. In this case, because
the ‘dynamic application’ of df to dx is lazy, the closure will not be evaluated
until the value of the dynamic on disk named “result” is needed. Running progé
tries to match the dynamic dr, from the file named “result”, with the type Int.
After this succeeds, it displays the value by evaluating the expression, which is
semantically equal to let x = 40 + 2 in x * x, yielding 1764.

progl world = writeDynamic "function" (dynamic * :: Int Int -> Int) world
prog2 world = writeDynamic "value" (dynamic 40 + 2) world

prog3 world = let (okl, df, worldl) = readDynamic "function" world
(ok2, dx, world2) = readDynamic "value" worldl
in writeDynamic "result" (dynamicApply df dx) world2

prog4 world = let (ok, dr, worldl) = readDynamic "result" world
in (case dr of (x :: Int) -> x, worldl)

" Clean uses | to denote overloading. In Haskell this would be written as
(TC t) => Dynamic -> Maybe t.

8 This is a uniqueness attribute, indicating that the world environment is passed
around in a single threaded way. Unique values allow safe destructive updates and
are used for I/O in Clean. The value of type World corresponds with the hidden
state of the I0 monad in Haskell.

40 Arjen van Weelden and Rinus Plasmeijer

3 An Overview of Esther

The last example of the previous section shows how one can store and retrieve
values, expressions, and functions of any type to and from the file system. It
also shows that the dynamicApply function can be used to type check an appli-
cation at run-time using the static types stored in dynamics. Combining both
in an interactive ‘read expression — apply dynamics — evaluate and show result’
loop gives a very simple shell that already supports the type checked run-time
application of programs to documents.

Obviously, we could have implemented type checking ourselves using one of
the common algorithms involving building and solving a list of type equations.
Instead, we decided to use Clean’s dynamic run-time unification, for this has
several advantages: 1) Clean’s dynamics allow us to do type safe and lazy I/O of
expressions; 2) we do not need to convert between the (hidden) type represen-
tation used by dynamics and the type representation used by our type checking
algorithm; 3) it shows whether Clean’s current dynamics interface is powerful
enough to implement basic type inference and type checking; 4) we get future
improvements of Clean’s dynamics interface for free (e.g. uniqueness attributes
or overloading).

Unlike common command interpreters or shells, our shell Esther does not
work on untyped files that consist of executables and streams of characters.
Instead, all functions/programs are stored as dynamics, forming a rudimentary
typed file system.

Moreover, instead of evaluating the expression by interpretation of the source
code, Esther generates a new dynamic that contains a closure that refers to the
compiled code of other programs. The shell, therefore, is a hybrid interpreter
that generates compiled code. The resulting dynamic can be used by any other
compiled Clean program without using an interpreter or the shell. Dynamics
can contain closures, which refer to code and data belonging to other compiled
Clean programs. When needed for evaluation, the code is automatically linked
to the running program by Clean’s dynamic linker. This approach results in less
overhead during evaluation of the expression than using a conventional source
code interpreter.

Esther performs the following steps in a loop:

— it reads a string from the console and parses it like a Clean expression. It
supports denotations of Clean’s basic and predefined types, application, infix
operators, lambda abstraction, overloading, let(rec), and case expressions;

— identifiers that are not bound by a lambda abstraction, a let(rec), or a case
pattern are assumed to be names of dynamics on disk, and they are read
from disk;

— type checks the expression using dynamic run-time unification and type pat-
tern matching, which also infers types;

— if the command expression does not contain type errors, Esther displays
the result of the expression and the inferred type. Esther will automatically
be extended with any code necessary to display the result (which requires
evaluation) by the dynamic linker.

A Functional Shell That Dynamically Combines Compiled Code 41

[D-\Hilde Filesystemboot bat N [=1 £
/hume) 48 + 2 4
2 :: In

/home) fat y
t ¢a, b ->a e+ D:\Hilde Filesystem\boot bat

t/home? map fst :/home? cd “/programs/StdEnv”
ap ~ =: [a, h2]1 - [al NIT :: UNIT

:/home> 18 + "M1" 2:/prograns /StdEnv> 1s "

Cannot apply + 18 :: Int -> Int "

to "1V i {#iChar} wx if

:/home> inc instance one Int
id id :: a->a | +a & one a instance one Real
sshome> (NF o x =2 F (F x2) 3> (twice) infix1 9 hot
*BICKC BII»::(a->a)->a->a (+) infixl 6
t/home? inc twice 1.14 instance + Int
.14 :: Real (== infix 4
/home> head list = caze list of [x:ixs] -3 x inztance == Int
{5 (B K I>> mismatch I :=: [al -> a map
/home’> head [1] length

Pattern miszmatch in case = s
B:/home> fac n = if <n (= 1> 1 <(n = fac <n - 1 nd
stherS (G* IF (C' (B .+. .+. _+.3 I 1) 1) (8" * l(&&) infixr 3
L. L4 = Int > Int
i:/home> fac 18 () infixr 2
628880 :: Int 11ter
2:/home > famkeMewProcesz "localhost™ Esther BUEPSE
Famkeld '131.174.32.285" 23 :: Famkeld BFO
3:/home > instance zero lnt1

Fig. 1. A combined screenshot of two incarnations of Esther.

3.1 Example: A Session with Esther

To illustrate the expressive power of Esther, we show an Esther session in Fig.
1 (the left window with the white title bar) and explain what happens:

‘Simple’ arithmetic. The shell looks in the current search-path to find the
infix function +. The + is overloaded, and the shell searches again for an
instance for + for type Int. Finally, it responds with the value and inferred
type of the result.

2. Typing the name of a dynamic at the prompt shows its contents, which can
contain unnamed lambda functions (\), and its type.

3. The dynamic map is applied to the dynamic fst yielding the expected type.

4. The infix operator + cannot be applied to an integer and a string.

5. The overloaded function inc is revealed to be overloaded in + and one. The
\ id id is caused by the way Esther handles overloading (see Sect. 4.6.).

6. The lambda expression \f x -> £ (£ x) is written to disk, using the >>
operator, and named twice. It is defined as a left associative infix operator
with priority 9. Esther shows the internal code and type of the lambda
expression, exposing the fact that it uses combinators (see Sect. 4.2).

7. The dynamic inc is applied to 1.14 via the previously defined operator
twice.

8. Defines a function named head that selects the first argument of a list using
a case expression.

9. Applies head to an empty list yielding a pattern mismatch exception.

10. Defines a function named fac that yields the factorial of its argument.

42 Arjen van Weelden and Rinus Plasmeijer

11. fac 10 is evaluated to 3628800.

12. famkeNewProcess is used to start Esther (which is also stored as a dynamic)
as new process, on the same computer (right window with black title bar):
1 Evaluates cd "/programs/StdEnv" to ‘change directory’ to the direc-
tory that provides Clean’s standard library to Esther, by storing the
functions as dynamics in the file system. Because cd has type String
«World — «World and therefore no result, Esther shows UNIT (i.e. void).
2 Evaluates the application of 1s to the empty string, showing all files in

the current directory: the functions in the standard library.

o [ezrab™23 H

&+ D-\Hilde Flesystem“boot bat

Srhome? (2xa—bh72". “a b —> 2.8 = a
("2xa—h 2", G (B° —> (B' = 2 I> (8"
=-home >

Open HE

Look in: I_}hnme] = = B~

Q‘ (= 2ab2 0 dyni
Desktop

Fig. 2. A combined screenshot of the calculator in action and Esther.

3.2 Example: A Calculator That Uses a Shell Function

Figure 2 shows a sequence of screenshots of a calculator program written in
Clean. Initially, the calculator has no function buttons. Instead, it has buttons
to add and remove function buttons. These will be loaded dynamically after
adding dynamics that contain tuples of String and Real Real — Real.

The lower half of Fig. 2 shows a command line in the Esther shell that writes
such a tuple as a dynamic named “2a-b2.u.dyn” to disk. The extension “.dyn”
is added by Clean dynamic linker, the “.u” before the extension is used to store
the file fixity attributes (“u” means prefix). Esther pretty prints these attributes,
but the Microsoft Windows file selector shows the file name in a raw form.

A Functional Shell That Dynamically Combines Compiled Code 43

Its button name is 2*a-b~2 and the function is\a b -> 2.0 * a - b * b.
Pressing the Add button on the calculator opens a file selection dialog, shown
at the bottom of Fig. 2. After selecting the dynamic named “2a-2b.u.dyn”, it
becomes available in the calculator as the button 2*xa-b~2, and it is applied to
8 and 3 yielding 7.

The calculator itself is a separately compiled Clean executable that runs
without using Esther. Alternatively, one can write the calculator, which has
type [(String, Real Real — Real)] xWorld — *World, to disk as a dynamic.
The calculator can then be started from Esther, either in the current shell or as
a separate process.

4 Type Checking with Dynamics

In this section, we show how one can use the type unification of Clean’s dynamic
run-time system to type check a common syntax tree, and how to construct the
corresponding Clean expression. The parsing is trivial and we will assume that
the string has already been successfully parsed. In order to support a basic, but
complete, functional language in our shell we need to support function defini-
tions, lambda, let(rec), and case expressions.

We will introduce the syntax tree piecewise and show for each kind of ex-
pression how to construct a dynamic that contains the corresponding Clean
expression and the type for that expression. Names occurring free in the com-
mand line are read from disk as dynamics before type checking. The expression
can contain references to other dynamics, and therefore to the compiled code of
functions, which will be automatically linked by Clean’s run-time system.

4.1 Application

Suppose we have a syntax tree for constant values and function applications that
looks like:

:: Expr = (@) infixl 9° Expr Expr //'° Application
| Value Dynamic // Constant or dynamic value from disk

We introduce a function compose, which constructs the dynamic containing
a value with the correct type that, when evaluated, will yield the result of the
given expression.

compose :: Expr -> Dynamic
compose (Value d) = d
compose (f @ x) = case (compose f, compose x) of
(f :: a->b, x :: a) -> dynamic f x :: b
(af, dx) -> raise'’ ("Cannot apply " +++ typeOf df

+++ " to " +++ typeOf dx)

9 This defines an infix constructor with priority 9 that is left associative.

10 This a Clean comment to end-of-line, like Haskell’s —-.

1 For easier error reporting, we implemented imprecise user-defined excep-
tions & la Haskell [8]. We used dynamics to make the set of exceptions extensible.

44 Arjen van Weelden and Rinus Plasmeijer

typeOf :: Dynamic -> String
typeOf dyn = toString (typecodeOfDynamic dyn) // pretty print type

Composing a constant value, contained in a dynamic, is trivial. Composing an
application of one expression to another is a lot like the dynamicApply function
of Sect. 2. Most importantly, we added error reporting using the type0f function
for pretty printing the type of a value inside a dynamic.

4.2 Lambda Expressions

Next, we extend the syntax tree with lambda expressions and variables.

: Expr = ... // Previous def.
| (-=>) infixr O Expr Expr // Lambda abstraction: \ .. -> ..
| Var String // Variable
| ST KII // Combinators

At first sight, it looks as if we could simply replace a Lambda constructor in
the syntax tree with a dynamic containing a lambda expression in Clean:

compose (Var x --> e) = dynamic (\y -> composelambda x y e :: ?)

The problem with this approach is that we have to specify the type of
the lambda expression before the evaluation of composeLambda. Furthermore,
composeLambda will not be evaluated until the lambda expression is applied to
an argument. This problem is unavoidable because we cannot get ‘around’ the
lambda. Fortunately, bracket abstraction [9] solves both problems.

Applications and constant values are composed to dynamics in the usual way.
We translate each lambda expression (-->) to a sequence of combinators (8, K,
and I) and applications, with the help of the function ski.

compose ... // Previous def.

compose (x --> e) = compose (ski x e)

compose I = dynamic \x -> x

compose K = dynamic \x y -> x

compose S = dynamic \f g x -> f x (g %)

ski :: Expr Expr -> Expr // common bracket abstraction
ski x (y —=> e) = ski x (ski y e)

ski (Var x) (Var y) 12 x==y=1

ski x (fey) =S@skixf@skizxy

ski x e =KQe

Composing lambda expressions uses ski to eliminate the Lambda and Var-
iable syntax constructors, leaving only applications, dynamic values, and combi-
nators. Composing a combinator simply wraps its corresponding definition and
type as a lambda expression into a dynamic.

Special combinators and combinator optimization rules are often used to im-
prove the speed of the generated combinator code by reducing the number of

12 1f this guard fails, we end up in the last function alternative.

A Functional Shell That Dynamically Combines Compiled Code 45

combinators [10]. One has to be careful not to optimize the generated combina-
tor expressions in such a way that the resulting type becomes too general. In
an untyped world this is allowed because they preserve the intended semantics
when generating untyped (abstract) code. However, our generated code is con-
tained within a dynamic and is therefore typed. This makes it essential that we
preserve the principal type of the expression during bracket abstraction. Adding
common 7-conversion, for example, results in a too general type for Var "f" -->
Var "x" --> f x: Va.a — a, instead of Vab.(a — b) — a — b. Such optimiza-
tions might prevent us from getting the principal type for an expression. Simple
bracket abstraction using S, K, and I, as performed by ski, does preserves the
principal type [11].

Code combined by Esther in this way is not as fast as code generated by the
Clean compiler. Combinators introduced by bracket abstraction are the main rea-
son for this slowdown. Additionally, all applications are lazy and not specialized
for basic types. However, these disadvantages only hold for the small (lambda)
functions written at the command line, which are mostly used for plumbing. If
faster execution is required, one can always copy-paste the command line into a
Clean module that writes a dynamic to disk and running the compiler.

In order to reduce the number of combinators in the generated expression,
our current implementation uses Diller’s algorithm C [12] without 7-conversion
in order to preserve the principal type, while reducing the number of generated
combinators from exponential to quadratic. Our current implementation seems
to be fast enough, so we did not explore further optimizations by other bracket
abstraction algorithms.

4.3 Irrefutable Patterns

Here we introduce irrefutable patterns, e.g. (nested) tuples, in lambda expres-
sions. This is a preparation for the upcoming let(rec) expressions.

: Expr = ... // Previous def.
| Tuple Int // Tuple constructor

compose ... // Previous def.
compose (Tuple n) = tupleConstr n

tupleConstr :: Int -> Dynamic

tupleConstr 2 = dynamic \x y -> (x, y)
tupleConstr 3 = dynamic \x y z -> (x, y, 2)
tupleConstr ... // and so on..."

ski :: Expr Expr -> Expr

ski (f @ x) e =skif (x -->e)

ski (Tuple n) e = Value (matchTuple n) Q@ e
ski ... // previous def.

13 _until 32. Clean does not support functions or data types with arity above 32.

46 Arjen van Weelden and Rinus Plasmeijer

matchTuple :: Int -> Dynamic

matchTuple 2 = dynamic \f t -> £ (fst t) (snd t)

matchTuple 3 = dynamic \f t -> f (fst3 t) (snd3 t) (thd3 t)
matchTuple ... // and so on...

We extend the syntax tree with Tuple n constructors (where n is the num-
ber of elements in the tuple). This makes expressions like Tuple 3 @ Var "x"
@ Var "y" @ Var "z" --> Tuple 2 @ Var "x" @ Var "z" valid expressions.
This example corresponds with the Clean lambda expression \(x, y, z) ->
(x, 2).

When the ski function reaches an application in the left-hand side of the
lambda abstraction, it processes both sub-patterns recursively. When the ski
function reaches a Tuple constructor it replaces it with a call to the matchTuple
function. Note that the right-hand side of the lambda expression has already been
transformed into lambda abstractions, which expect each component of the tuple
as a separate argument. We then use the matchTuple function to extract each
component of the tuple separately. It uses lazy tuple selections (using fst and
snd, because Clean tuple patterns are always eager) to prevent non-termination
of recursive let(rec)s in the next section.

4.4 Let(rec) Expressions

Now we are ready to add irrefutable let(rec) expressions. Refutable let(rec) ex-
pressions must be written as cases, which will be introduced in next section.

: Expr = ... // Previous def.
| Letrec [Def] Expr // let(rec) .. in ..
|y // Combinator

:: Def = (::=) infix O Expr Expr /.=

compose ... // Previous def.
compose (Letrec ds e) = compose (letRecToLambda ds e)
compose Y = dynamic y where y £ = £ (y £)

letRecTolLambda :: [Def] Expr -> Expr
letRecTolLambda ds e = let (p ::= d) = combine ds
in ski pe @ (Y @ ski p d)

combine :: [Def] -> Def

combine [p ::= el =p ::=e
combine [pl ::= el:ds] = let (p2 ::= e2) = combine ds
in Tuple 2 @ pl @ p2 ::= Tuple 2 @ el Q@ e2

When compose encounters a let(rec) expression it uses letRecToLambda to
convert it into a lambda expression. The letRecToLambda function combines
all (possibly mutually recursive) definitions by pairing definitions into a single
(possibly recursive) irrefutable tuple pattern. This leaves us with just a single
definition that letRecToLambda converts to a lambda expression in the usual
way [13].

A Functional Shell That Dynamically Combines Compiled Code 47

4.5 Case Expressions

Composing a case expression is done by transforming each alternative into a
lambda expression that takes the expression to match as an argument. If the
expression matches the pattern, the right-hand side of the alternative is taken.
When it does not match, the lambda expression corresponding to the next alter-
native is applied to the expression, forming a cascade of if-then-else constructs.
This results in a single lambda expression that implements the case construct,
and we apply it to the expression that we wanted to match against.

it Expr = ... // Previous def.

| Case Expr [Alt] // case .. of ..
i1 Alt = (==>) infix 0 Expr Expr /] . => L.
compose ... // Previous def.

compose (Case e as) = compose (altsToLambda as @ e)

We translate the alternatives into lambda expressions below using the fol-
lowing rules. If the pattern consists of an application we do bracket abstraction
for each argument, just as we did for lambda expressions, in order to deal with
each subpattern recursively. Matching against an irrefutable pattern, such as
variables of tuples, always succeeds and we reuse the code of ski that does the
matching for lambda expressions. Matching basic values is done using ifEqual
that uses Clean’s built-in equalities for each basic type. We always add a default
alternative, using the mismatch function, that informs the user that none of the
patterns matched the expression.

altsTolLambda :: [Alt] -> Expr
altsToLambda []
altsToLambda [f @ x ==> e:as]
altsToLambda [Var x ==> e:_] Var x —=> e
altsToLambda [Tuple n ==> e:_] Tuple n —--> e
altsTolLambda [Value dyn ==> th:as] = let el = altsTolLambda as
in case dyn of
(i :: Int) -> Value (ifEqual i) @ th @ el
(c :: Char) -> Value (ifEqual c) @ th @ el
. // for all basic types

Value mismatch
altsToLambda [f ==> ski x e:as]

ifEqual :: a -> Dynamic | TC a & Eq a
ifEqual x = dynamic \th el y -> if (x == y) th (el y)
: Ab: b (@™ ->b) a~ >b

mismatch = dynamic raise "Pattern mismatch" :: A.a: a

Matching against a constructor contained in a dynamic takes more work.
For example, if we put Clean’s list constructor [:] in a dynamic we find that
it has type Va.a — [a] — [a], which is a function type. In Clean, one cannot
match closures or functions against constructors. Therefore, using the function
makeNode below, we construct a node that contains the right constructor by
adding dummy arguments until it has no function type anymore. The function
ifMatch uses some low-level code to match two nodes to see if the constructor of

48 Arjen van Weelden and Rinus Plasmeijer

the pattern matches the outermost constructor of the expression. If it matches,
we need to extract the arguments from the node. This is done by the applyTo
function, which decides how many arguments need to be extracted (and what
their types are) by inspection of the type of the curried constructor. Again,
we use some low-level auxiliary code to extract each argument while preserving
laziness.

altsToLambda [Value dyn ==> th:as] = let el = altsTolLambda as
in case dyn of
. // previous definition for basic types
constr -> Value (ifMatch (makeNode constr))
@ (Value (applyTo dyn) @ th) @ el

ifMatch :: Dynamic -> Dynamic
ifMatch (x :: a) = dynamic \th el y -> if (matchNode x y) (th y) (el y)
:: Ab: (@a->Db) (a->b)a->b

makeNode :: Dynamic -> Dynamic
makeNode (f :: a -> b) = makeNode (dynamic f undef :: b)
makeNode (x :: a) = dynamic x :: a

applyTo :: Dynamic -> Dynamic

applyTo ... // and so on, most specific type first...
applyTo (_ :: a b => ¢) = dynamic \f x -> f (arglof2 x) (arg20f2 x)
:: Ad: (ab->d) c->d

applyTo (_ :: a => b) = dynamic \f x -> f (arglofl x)
it Ac: (a->¢c) b->c
dynamic \f x -> f :: Ab: ba ->b

applyTo (_ :: a) =
matchNode :: a a -> Bool // low-level code; compares two nodes.
argiofn :: a -> b // low-level code; selects %th argument of m-ary node

Pattern matching against user defined constructors requires that the con-
structors are available from (i.e. stored in) the file system. Esther currently does
not support type definitions at the command line, and the Clean compiler must
be used to introduce new types and constructors into the file system. The ex-
ample below shows how one can write the constructors C, D, and E of the type
T to the file system. Once the constructors are available in the file system, one
can write command lines like \x -> case x of Cy -> y; Dz -> z; E -> 0
(for which type (T Int) — Int is inferred).

:: Ta=Ca | DInt | E

Start world =
let (_, wl) = writeDynamic "C" (dynamic C :: A.a: a -> T a) world
(_, w2) = writeDynamic "D" (dynamic D :: A.a: Int -> T a) wl
(_, w3) = writeDynamic "E" (dynamic E :: A.a: T a) w2
in w3

A Functional Shell That Dynamically Combines Compiled Code 49

4.6 Overloading

Support for overloaded expressions within dynamics in Clean is not yet im-
plemented (e.g. one cannot write dynamic (==) :: A.a: a a -> Bool | Eq
a). Even when a future dynamics implementation supports overloading, it can-
not be used in a way that suits Esther. We want to solve overloading using
instances/dictionaries from the file system, which may change over time, and
which is something we cannot expect from Clean’s dynamic run-time system
out of the box.

Below is the Clean version of the overloaded functions == and one. We will
use these two functions as a running example.

class Eq a where (==) infix 4 :: a a -> Bool
class one a where one :: a

instance Eq Int where (==) x y = // low-level code to compare integers
instance one Int where one =1

To mimic Clean’s overloading, we introduce the type O to differentiate be-
tween ‘overloaded’ dynamics and ‘normal’ dynamics. The type O, shown below,
has four type variables which represent: the variable the expression is overloaded
in (v), the dictionary type (d), the ‘original’ type of the expression (t), and the
type of the name of the overloaded function (n). Values of the type O consists
of a constructor 0 followed by the overloaded expression (of type d — t), and
the name of the overloaded function (of type n). We motivate the design of this
type later on in this section.

::0vdtn=0(@@->t)n // Overloaded expression
== = dynamic 0 id "EqQ" :: A.a: 0 a (a a -> Bool) (a a -> Bool) String
one = dynamic 0 id "one" :: A.a: 0 a a a String

instance_Eq_Int dynamic \x y -=> x ==y :: Int Int -> Bool
instance_one_Int = dynamic 1 :: Int

The dynamic ==, in the example above, is Esther’s representation of Clean’s
overloaded function ==. The overloaded expression itself is the identity function
because the result of the expression is the dictionary of ==. The name of the
class is Eq. The dynamic == is overloaded in a single variable a, the type of the
dictionary is a — a — Bool as expected, the ‘original’ type is the same, and the
type of the name is String. Likewise, the dynamic one is Esther’s representation
of Clean’s overloaded function one.

By separating the different parts of the overloaded type, we obtain direct
access to the variable in which the expression is overloaded. This makes it easy to
detect if the overloading has been resolved (i.e. the variable no longer unifies with
Va.a). By separating the dictionary type and the ‘original’ type of the expression,
it becomes easier to check if the application of one overloaded dynamic to another
is allowed (i.e. can a value of type O (@ — b) be applied to a value of type
O a)

50 Arjen van Weelden and Rinus Plasmeijer

To apply one overloaded dynamic to another, we combine the overloading
information using the P (pair) type as shown below in the function apply0.

:Pab=Pab // Just a pair

apply0 :: Dynamic Dynamic -> Dynamic
apply0 ((0 £ nf) :: 0 vf df (a -> b) sf) ((0 x nx) :: 0 vx dx a sx)
= dynamic 0 (\d_f d_x -> f d_f (x d_x)) (P nf nx)
:: 0 (P vE vx) (P df dx) b (P sf sx)

We use the (private) data type P instead of tuples because this allows us to
differentiate between a pair of two variables and a single variable that has been
unified with a tuple. Applying apply0 to == and one yields an expression se-
mantically equal to isOne below. isOne is overloaded in a pair of two variables,
which are the same. The overloaded expression needs a pair of dictionaries to
build the expression (==) one. The ‘original’ type is a — Bool, and it is over-
loaded in Eq and one. Esther will pretty print this as: isOne :: a -> Bool |
Eq a & one a.

isOne = dynamic 0 (\(P d_Eq d_one) -> id d_Eq (id d_one)) (P "Eq" "omne")
:: Aba: 0 (P aa) (P (aa->Bool) a) (a -> Bool) (P String String)

Applying isOne to the integer 42 will bind the variable a to Int. Esther is
now able to choose the right instance for both Eq and one. It searches the file
system for the files named “instance Eq Int” and “instance one Int”, and applies
the code of isOne to the dictionaries after applying the overloaded expression to
42. The result will look like 1s0ne10 in the example below, where all overloading
has been removed.

isOne42 = dynamic (\(P d_Eq d_one) -> id d_Eq (id d_one) 42)
(P d_Eq_Int d_one_Int) :: Bool

Although overloading is resolved in the example above, the plumbing/dict-
ionary passing code is still present. This will increase evaluation time, and it is
not clear yet how this can be prevented.

5 Related Work

We have not yet seen an interpreter or shell that equals Esther’s ability to use
pre-compiled code, and to store expressions as compiled code, which can be used
in other already compiled programs, in a type safe way.

Es [14] is a shell that supports higher-order functions and allows the user
to construct new functions at the command line. A UNIX shell in Haskell [15]
by Jim Mattson is an interactive program that also launches executables, and
provides pipelining and redirections. Tcl [16] is a popular tool to combine pro-
grams, and to provide communications between them. None of these programs
provides a way to read and write typed objects, other than strings, from and to
disk. Therefore, they cannot provide our level of type safety.

A functional interpreter with a file system manipulation library can also
provide functional expressiveness and either static or dynamic type checking of

A Functional Shell That Dynamically Combines Compiled Code 51

part of the command line. For example, the Scheme Shell (ScSh) [17] integrates
common shell operations with the Scheme language to enable the user to use
the full expressiveness of Scheme at the command line. Interpreters for statically
typed functional languages, such as Hugs [18], even provide static type checking
in advance. Although they do type check source code, they cannot type check
the application of binary executables to documents/data structures because they
work on untyped executables.

The BeanShell [19] is an embeddable Java source interpreter with object
scripting language features, written in Java. It is able of type inference for vari-
ables and to combine shell scripts with existing Java programs. While Esther
generates compiled code via dynamics, the BeanShell interpreter is invoked each
time a script is called from a normal Java program.

Run-time code generation in order to specialize code at run-time to certain
parameters is not related to Esther, which only combines existing code.

6 Conclusions and Future Work

We have shown how to build a shell that provides a simple, but powerful strongly
typed functional programming language. We were able to do this using only
Clean’s support for run-time type unification and dynamic linking, albeit syntax
transformations and a few low-level functions were necessary. The shell named
Esther supports type checking and inference before evaluation. It offers applica-
tion, lambda abstraction, recursive let, pattern matching, and function defini-
tions: the basics of any functional language.

Additionally, infix operators and support for overloading make the shell easy
to use. The support for infix operators and overloading required the storage of
additional information in the file system. We have chosen to use file attributes
to store the infix information, and instances for an overloaded function f are
stored as files named “instance £ T'ype”.

By combining compiled code, Esther allows the use of any pre-compiled pro-
gram as a function in the shell. Because Esther stores functions/expressions
constructed at the command line as a dynamic, it supports writing compiled
programs at the command line. Furthermore, these expressions written at the
command line can be used in any pre-compiled Clean program. The evaluation
of expressions using recombined compiled code is not as fast as using the Clean
compiler. Speed can be improved by introducing less combinators during bracket
abstraction, but it seams unfeasible to make Esther perform the same optimiza-
tions as the Clean compiler. In practice, we find Esther responsive enough, and
more optimizations do not appear worth the effort at this stage. One can al-
ways construct a Clean module using the same syntax and use the compiler to
generate a dynamic that contains more efficient code.

Further research will be done on a more elaborate typed file system, and
support for types and type definitions at the command line. Esther will be in-
corporated into our ongoing research on the development of a strongly typed
functional operating system.

52

Arjen van Weelden and Rinus Plasmeijer

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean Language Report
version 2.1. University of Nijmegen, November 2002. http://cs.kun.nl/~clean.
Simon Peyton Jones and John Hughes et al. Report on the programming language
Haskell 98. University of Yale, 1999. http://www.haskell.org/definition/.

Arjen van Weelden and Rinus Plasmeijer. Towards a Strongly Typed Functional
Operating System. In R. Pena and T. Arts, editors, 14th International Workshop
on the Implementation of Functional Languages, IFL’02, pages 215-231. Springer,
September 2002. LNCS 2670.

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic
Typing in a Statically Typed Language. ACM Transactions on Programming Lan-
guages and Systems, 13(2):237-268, April 1991.

Marco Pil. Dynamic Types and Type Dependent Functions. In K. Hammond,
T. Davie, and C. Clack, editors, 10th International Workshop on the Implemen-
tation of Functional Languages, IFL 98, volume 1595 of LNCS, pages 169-185,
London, 1999. Springer.

Martijn Vervoort and Rinus Plasmeijer. Lazy Dynamic Input/Output in the Lazy
Functional Language Clean. In R. Pena and T. Arts, editors, 14th International
Workshop on the Implementation of Functional Languages, IFL’02, pages 101-117.
Springer, September 2002. LNCS 2670.

M. Abadi, L. Cardelli, B. Pierce, G. Plotkin, and D. Rémy. Dynamic Typing in
Polymorphic Languages. In Proceedings of the ACM SIGPLAN Workshop on ML
and its Applications, San Francisco, June 1992.

. Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, C. A. R. Hoare, and

Simon Marlow. A Semantics for Imprecise Exceptions. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 25-36, 1999.

. M. Schonfinkel. Uber die Bausteine der mathematischen Logik. In Mathematische

Annalen, volume 92, pages 305-316. 1924.

Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North-Holland,
Amsterdam, 1958.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and \-
Calculus. Cambridge University Press, 1986. ISBN 0521268966.

Antoni Diller. Compiling Functional Languages. John Wiley and Feys Sons Ltd,
1988.

Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

Paul Haahr and Byron Rakitzis. Es: A Shell with Higher-order Functions. In
Proceedings of the USENIX Winter 1998 Technical Conference, pages 51-60, 1993.
Jim Mattson. The Haskell Shell.
http://www.informatik.uni—bonn.de/~ralf/software/examples/Hsh.html.

J. K. Ousterhout. Tcl: An Embeddable Command Language. In Proceedings of the
USENIX Winter 1990 Technical Conference, pages 133-146, Berkeley, CA, 1990.
USENIX Association.

O. Shivers. A Scheme Shell. Technical Report MIT/LCS/TR-635, 1994.

Mark P Jones, Alastair Reid, the Yale Haskell Group, the OGI School of
Science, and Engineering at OHSU. The Hugs 98 User Manual, 1994-2002.
http://cvs.haskell.org/Hugs/.

Pat Niemeyer. Beanshell 2.0.

http://www.beanshell.org.

Polymorphic Type Reconstruction
Using Type Equations*

Venkatesh Choppella

Indian Institute of Information Technology and Management Kerala
Thiruvananthapuram, Kerala 695 581, India
choppell@iiitmk.ac.in

Abstract. The W algorithm of Milner [Mil78] and its numerous vari-
ants [McA98,LY98,YTMWO00] implement type reconstruction by build-
ing type substitutions. We define an algorithm W¥ centered around
building type equations rather than substitutions. The design of WF
is motivated by the belief that reasoning with substitutions is awkward.
More seriously, substitutions fail to preserve the exact syntactic form of
the type equations they solve. This makes analysing the source of type
errors more difficult. By replacing substitution composition with unions
of sets of type equations and eliminating the application of substitution
to environments, we obtain an algorithm for type reconstruction that is
simple and also useful for type error reconstruction. We employ a se-
quentiality principle for unifier composition and a constructive account
of mgu-induced variable occurrence relation to design W% and prove
its correctness. We introduce syntax equations as a formal syntax for
progam slices. We use a simple constraint generation relation to relate
syntax equations with type equations to trace program slices responsible
for a type error.

1 Introduction

The Damas-Milner type system [DM82,Dam85], also known as the Hindley-
Milner type system, is the basis for type reconstruction in higher-order, poly-
morphically typed functional languages like ML [MTH90] and Haskell [PJH99).
Type reconstruction in Damas-Milner is implemented using Milner’s principal
type algorithm W [Mil78]. An important practical concern affecting the usability
of these languages has been the issue of intelligent type error diagnosis, that is,
locating the elements of the source program that contribute to the type error
in an ill-typed program. The problem of type error diagnosis has led to several
proposals for modifying W [McA98,LY98 YTMWO00].

The W algorithm and the above mentioned variants compute the principal
type of an expression by building substitutions, which are maps from type vari-
ables to types. Each type variable is a placeholder for the type of a subexpression

* Part of this work was done when the author was at Oak Ridge National Laboratory,
Oak Ridge TN, USA, managed by UT-Battelle, LLC for the U.S. Department of
Energy under contract number DE-AC05-000R22725.

P. Trinder, G. Michaelson, and R. Pena (Eds.): IFL 2003, LNCS 3145, pp. 53-68, 2004.
© Springer-Verlag Berlin Heidelberg 2004

54 Venkatesh Choppella

of the program expression. It is intuitively appealing, however, to consider divid-
ing the process of building solution substitutions into two phases: an initial phase
in which type constraints are constructed and accumulated followed by a second
phase in which these constraints are solved to obtain a solution substitution.
Such a separation of phases, for example, is the basis of Wand’s proof [Wan87]
of Hindley’s theorem, in which the typability problem for simply-typed lambda
calculus is reduced to term unification [CF58 Hin69]. Viewing type assignments
as solutions to type equations was encouraged by Milner himself [Mil78], and
later by Cardelli [Car87] as well, mainly through examples. In this paper, we
present an algorithm W that relies on a limited separation of the generation of
type equations from their solution. Using the algorithm for unification source-
tracking developed earlier [Cho02,CHO03], we show how this algorithm may be
used for tracking the source of type errors.

The substitutions computed by the Milner W algorithm and others are so-
lutions (unifiers) of sets of type equations, yet these equations are never made
explicit in these algorithms. Since substitutions lose information about the ex-
act form of the term equations they solve, it is difficult to reconstruct source
information from substitutions alone. Therefore, we seek a type reconstruction
algorithm centered around the computation of type equations with the follow-
ing property: The equations should have an mgu that is trivially related to the
mgu computed by W. Otherwise, the non-unifiability of these equations, which
indicates untypability, should be diagnosable independent of the Damas-Milner
type system, using unification source-tracking [CHO03], for example.

Separating the generation of type equations from their solution is, however,
easier said than done for Damas-Milner type reconstruction. The difficulty may
be traced to the non-compositional behavior of the W algorithm and its variants:
in the expression let z = e in €/, the type of e is required to compute the type
of €’. This non-compositional behavior is due to the absence of the principal
typing (as opposed to the principal type) property of the Damas-Milner type
system [Wel02].

To be sure, separation is possible, either by generating type inequations, or
by unfolding all the let bindings in the original program. But these approaches
move the type reconstruction problem outside the realm of unification and the
Damas-Milner regime respectively, and are also unsatisfactory from a practical
point of view. The solution of type inequations requires semi-unification rather
than ordinary unification [Hen93], while the unfolding of let bindings reduces the
problem to typability in the Curry-Hindley calculus at the cost of an increase
in program size in practice, and an exponential increase in the theoretical worst
case [KMMO1].

Our approach offers a middleground in which the type equation generation
phase is continued until a let expression let z = e in €’ is encountered. The
type equations for €’ refer to the type of e, which is obtained by solving the type
equations generated by e. By solving the equations at let boundaries, we avoid
both the problem of proliferation of type equations caused by let unfolding and
the need to generate type inequations.

Polymorphic Type Reconstruction Using Type Equations 55

1.1 Summary of Contributions and Outline of Paper
The main contributions of this paper are:

1. A sequentiality principle for unifier composition that relates unifier compo-
sition with union of term equations (Theorem 1, Section 2).

2. A constructive characterization of variable occurrences in terms computed
by applying most general unifiers (Lemmas 1 and 2, Section 2.2). This result
relies on the unification path framework developed earlier [CHO3]. Tt is used
to provide a formal, constructive interpretation of a common implementation
mechanism for identifying non-generic variables. (Section 4.2).

3. A type equation based polymorphic type reconstruction algorithm W¥ for
Damas-Milner (Section 4).

4. An application of the unification source-tracking algorithm developed in
[CHO3] to extract type equation slices from the output of W (Section 5).

5. A simple framework for error diagnosis in the Damas-Milner type system.
The framework consists of syntax equations (Section 5.1), which are a formal
notation for expressing program slicing information, type equations, and a
constraint generation relation relating syntax equations to type equations
(Section 5.2). Type equation slices computed in (4) are mapped back to
syntax equation slices generating a type error.

Section 2 presents a constructive view of unification. Section 3 briefly reviews
the Milner W algorithm. Section 4 defines W¥ and sketches its correctness.
Section 5 shows how W can be used for tracking type errors. Section 6 compares
our approach with published variants of W and other related work. Section 7
concludes with pointers to future work.

Proofs of all the results of this paper are included in an accompanying tech-
nical report [Cho03b].

2 A Constructive View of Unification

Term unification is at the heart of Damas-Milner type reconstruction. In this
section we first introduce a sequentiality principle for term unification. This
principle is used to justify the correctness of replacing substitution operations
with generation of term equations. Using examples, we then briefly review the
constructive approach to term unification offered by the unification path frame-
work of Choppella and Haynes [CH03]. We use this framework to formulate a
constructive account of the occurrence of variables in solutions computed by most
general unifiers. We assume familiarity with the basic concepts of term unifica-
tion, including terms, substitutions, idempotent substitutions, term equations,
unifiers, and most general unifiers (mgus).

If E is a system of term equations and s is a substitution, then sE denotes

the set of equations {s7 < 57! |7 = E}. vars(S) denotes the set of variables
occurring in the syntactic entity .S, where S represents a term, substitution, term
equation, or aggregates of these objects. If E is a set of term equations and s is

56 Venkatesh Choppella

a most general unifier (mgu) of E, then ind(s, E') denotes the set of independent
variables of s (that is, all variables unchanged by s) also occurring in FE.

Our first result relates mgu composition with the union of term equations
and forms the basis of our reformulation of W.

Theorem 1 (Sequentiality of unifier composition).
If s1 is a unifier (mgu) of Ev, and sb is a unifier (respectively mgu) of s1Fa,
then shsy is a unifier (respectively mgu) of By U Es.

A consequence of the sequentiality of unifier composition is the “left-to-right”
bias of W [McA98]. Theorem 1 suggests that a way out of this sequentiality is
to replace unifier composition with the symmetric operation of term equation
union.

2.1 Unification Paths

A system of term equations E is efficiently represented using a unification graph
(also denoted E) using structure sharing: variable nodes are shared; constructor
nodes may be shared. FE is unifiable if and only if the quotient graph F/~ under
the unification closure ~ of E is acyclic and homogenous (Paterson and Weg-
man [PW78]). Thus, the unifiability of E' depends on the connectivity properties
of E/~.

Unification source-tracking consists of witnessing the connectivity in the quo-
tient graph E/~ in terms of a special connectivity relation in the “source” graph
E. This special connectivity relation is defined using the idea of unification paths
introduced in [Cho02]. Unification paths are defined over the labeled directed
graph (LDG) underlying E (also denoted FE). The LDG underlying E is ob-
tained by labeling each projection edge from a constructor vertex labeled f to
its 7*" child with the symbol f;. Equational edges in E are oriented arbitrarily
and labeled €, the empty string. The inverse E~! of E is the LDG obtained by
reversing the orientation and inverting the label of each edge of E. The inverse
of a label f; is fifl; the inverse of € is €. Each inverted projection symbol f[l is
treated as an open parenthesis symbol whose matching closed parenthesis sym-
bol is f;. A unification path over E is any labeled path p in EUE~! whose label
l(p) is a suffix of a balanced string over these parenthesis symbols. The formal
relation between unification paths in E and paths in E/~ and an extension of
the unification algorithm to compute unification paths is presented in [CHO3].
In the rest of this section, we summarize the relation between unification paths,
unification closure and non-unifiability.

Let u, v be vertices in the unification graph of a system of term equations E.
EEp:u~ v (E E u~ v) denotes that p is a (there is a) unification path from
u to v over the unification graph of E, respectively. Thus, ~» is a reachability
relation. In the framework of unification paths, unification closure is a special
case of unification path reachability: £ = u ~vifand only if E = p:u~ v
and [(p) is a balanced parentheses string. Unification failure is also a special case
of reachability. For a clash, E = u ~ v, for some constructor vertices u and v

Polymorphic Type Reconstruction Using Type Equations 57

with different labels. For a cycle, E = p : u ~ u, for some variable u in E and
path p such that I{(p) is an unbalanced suffix of a balanced parentheses string.
The following example illustrates the idea of unification paths:

Ezample 1. Consider the system of (named) term equations E

€2t7 ;t8—>t6 f:t7 ;tl g:tg ;tg,
h:tio =ty — o jitio = ts — tg kot = ts — to

The LDG underlying the unification graph of E is shown in Figure 1. Construc-
tor vertices are identified by circles containing a constructor symbol. Projection
edges originate from constructor edges and are identified by solid arrows. Equa-
tional edges are named and are identified by open arrows. The names of the left
and right projection edges originating from a constructor vertex targeted by an
equational edge y are assumed to be y; and y2 respectively. To reduce clutter,
these names are omitted. The labels on these edges are also omitted, but are
equal to —1 and —o, respectively. Each —; for ¢ = 1,2 may be thought of as a
closed parenthesis symbol whose open parenthesis symbol is —>l-_1. The label €
on each equational edges is also omitted. An edge y in E~! corresponds to an
edge y~! in E with the direction of y and its label inverted. The thick brush
edges highlight specific unification paths of interest. The quotient graph with
respect to the unification closure of E is shown in Figure 2. The vertex set of
E/~ is the set of equivalence classes of ~.

t9

Fig. 1. Unification graph of the set of term equations of Example 1.

The element tg ~ tg of ~ is witnessed by the unification path j; Li=1hhsy
whose label is —, ' ec —, which simplifies to the balanced string —, ' —5. E
is non-unifiable because the quotient graph E/~ has a cycle. The cycle in the
quotient graph corresponds to the unification cycle j; 15=1hhkk; highlighted in
the source graph E. The label of this path is —[1—»1—»1 after simplification.

58 Venkatesh Choppella

w_1w_2 t 10

wi4t1t7

2

w3t5ts tl

t6 t9

Fig. 2. Quotient graph modulo the unification closure of the unification graph in Fig-
ure 1.

2.2 Unification Paths, mgu’s and Variable Occurrences

The use of unification paths is not limited to witnessing unification failure. In
this section, we show that when a system of equations is unifiable, unification
paths may be used as witnesses to the variable occurrence relation imposed by
any most general unifier for that system of equations. This witness construction
is used in Section 4.2 to track the source of non-generic type variables computed
during Damas-Milner type reconstruction.

Lemma 1 (Reachability and mgu-induced occurrence relation).
Let E be a unifiable set of term equations whose mgu is s. If t' € vars(E) and
t € ind(s, E), then t occurs in s(t') if and only if E =1~ t.

Ezample 2. Continuing Example 1, consider the system E’ consisting of the
equations {e, f, g}. The unification graph of E’ is a subgraph of E. The following
substitution s’ is an mgu of E’: {t1 +— t5 — tg,t7 — t5 — tg,ts — t5}. Note that
ind(s', E') = {ts,t¢}. Both variables 5 and tg occur in s'(¢1). This occurrence is
witnessed by the reachability of t5 and tg from ¢; in E’ via the unification paths
f~leerg and f~'ees respectively, highlighted in Figure 1.

It is useful to extend the notion of reachability relative to an arbitrary set of
variables. The set of variables in E reachable from V is defined as:

reachable(E, V') dof {tcwvars(E) | W e V:EEt ~1t}

Ezample 3. Continuing Example 2, let V' = {¢1}. The set reachable(E',V) is
vars(E") = {t1,1t5,t¢,t7,ts}. It is simple to verify that every variable in E’ is
indeed reachable from ¢; via a unification path.

Lemma 2 (Reachability and variable occurrences). If E is a set of term
equations, s is an idempotent mgu of E, and V is any set of variables, then

vars(sV) Nind(s, E) = reachable(E, V) Nind(s, E) (1)

Polymorphic Type Reconstruction Using Type Equations 59

Lemma 2 implies that if £ € F is an independent variable of s and occurs in
s(V) (lhs of (1)), then this occurrence can be witnessed by a unification path
over F from some variable in V' to ¢ (rhs). This result is used in Section 4.2 to
constructively characterize the non-genericity of type variables.

3 The Milner W Algorithm

The syntax of program and type expressions and the Milner W algorithm for
computing principal types are shown in Figure 3.

x € Var
e€FEp == z|Ar.e|Qeel|letz=cine
t e TyVar
Te Ty s=tlTt—T

o € TySch ::= 1 | Vt.o

s € TySubst = TyVar i Ty
A€ TyEnv = Var 33 TySch

1 W(A,e) =
2 case ¢ of
3 T .
let Va.r = A(x)
in (Id, T[a/a’]) where o' new

let (s;, ;) = W(A,e;) and (s},) = W(s;A4,ex)

4
5
6 @1 €j €k
7
8 and u = mgu{s},(7;) A t}

9 in (u s}, sj, u(t)) where t new

10)\i Zj.Ck:

11 let (sk, T6) = W(A[z : t],ex)

12 in (sg, sk(t) — 7%) where ¢ new

13 let; z; = ey in eg:

14 let (s, k) = W(A,er) and a = vars(ti) — FV(s,A)
15 and(s;, 1) = W((skA)[z : Va.1i], €1)

16 in (s;sg, 71)

Note: W fails if the mgu on line 8 does not exist.

Fig. 3. The syntax of program and type expressions and the principal type algorithm
W of the Damas-Milner type system DM.

We abbreviate Vt; ...Vt,.7 by Vi1,...,t,.7 and t1,...,t, by t. The set of
free type variables in a type scheme V.7 is equal to vars(r) — t. The set of free
variables FV(A) in a type environment A is the union of all free variables in
all type schemes in the range of A. The closure clo(A,7) of the type 7 with

60 Venkatesh Choppella

respect to the type environment A denotes the type scheme Va.7, where o =
vars(t) — FV(A).

The following example of untypability illustrates the well-known restriction
of monomorphic types imposed on A-bound variables.

Example 4. In the core ML expression Az. let y = Ax. @Qzx in Qyy, although
y is let-bound, y can only be assigned a monomorphic type. This in turn makes
the application Qyy and hence the expression e untypable. More precisely, since
z is A-bound, the type 7, of z is monomorphic. This type is assigned to the
subexpression Az. @Qzx as well. The type assigned to the let-bound variable y
is the closure clo([z : 7.],7.), which is 7,. This monomorphic type 7, is in turn
assigned to y causing Qyy to be untypable.

The use of substitutions (composition and application to terms and type envi-
ronments) in W is pervasive. In the next section, we reformulate W to minimize
the use of substitutions.

4 WE: Polymorphic Type Reconstruction
Using Type Equations

The algorithm W¥ (Figures 4 and 5) is based on the construction of type equa-
tions rather than substitutions. WF takes a type environment A and an ex-
pression e. It returns a pointed set of type equations (t, F) consisting of a type
variable ¢, a placeholder for the type of e, and a set E of type equations generated
for e.

1 WE(A, 67;) =

2 case e; of

3 X .

4 let Va.r = A(z)

5 and 7; = 7[a/d]

6 and di = {ti ; Ti}

7 and F; = d;

8 in <t7;, E7,>

9 where t;, 0/ new
10 @z €j €k

11 let <tj,Ej> :WE(A,(EJ')

12 and <tk7Ek> = WE(A7€k)
13 and d; = {tj Zz ty — ti}
14 and Ei:Ej U FErUd;
15 in (t;, E;) where t; new

Fig. 4. Algorithm WF: VAR and APP cases.

Polymorphic Type Reconstruction Using Type Equations 61

16)\i Xj.Ck:

17 let <tk7Ek> = WE(A[SC . tj]7€k)

18 and d; = {ti ; t; — tk}

19 and F;, = E, Ud;

20 in (t;, E;) where t;,t; new

21 let; xj = ek in e;:

22 let <tk7Ek> = WE(A7€k)

23 and si = mgu(FEx)

24 and 7, = Sk(tk)

25 and o = vars(ti) — FV(sk(A))
26 and (t;, E;) = WE(A[z : Va.7i), &)
27 and di = {ti ; tl7tj ; tk}

28 and F; = E, U E;Ud;

29 in (t;, E;) where t¢;,t; new

Note: WP fails if the mgu on line 23 does not exist.

Fig. 5. Algorithm W% ABS and LET cases.

Unlike in W, the role of substitutions in W¥ is greatly diminished: Unifiers
are computed only at let boundaries (line 23, Figure 5). Substitution composi-
tion is replaced by type equation union. Substitutions are not applied to type
environments, except to compute generic variables (line 25, Figure 5). However,
this application too can be eliminated (see Section 4.2). W computes the type
substitution for the application @; e; e, in a non-compositional way (line 7,
Figure 3). This instance of non-compositionality is eliminated when computing
type equations in W¥ (lines 11-12, Figure 4). Except at let boundaries, W
neither computes nor applies substitutions. The relation between W¥ and W is
formally explored in the next section.

Example 5. Assume the expression e of Example 4 is decorated with locations
in the following way: AO 21 |et2 Yys = A4 5. @6 Z7 I8 in @9 Y10 Yi1- This
allows us to refer to values as attributes of these locations. Thus, ey refers to
the expression e at location 0, (tg, Ey) to the pointed set of type equations at
location 0 etc. WE(0), eg) returns (tg, Eo), where Ej is the union of the set E of
equations e, f,g,h,j and k of Example 1 and the following equations:

? ? ? ?
a:t0:t5—>t6 bltzztg Clt3:t4 d:t4:t5—>t6

4.1 Correctness of WFE

We consider a hybrid algorithm WSF obtained by splicing together W and
WE. WSE takes an expression e and a type environment A and returns the tuple
(t,E, s, T) consisting of a type variable ¢, a set F of type equations, a substitution
s, and a type 7. The pair (t, E) is exactly that returned by W¥. The type 7 is
equal to the type returned by W and the substitution s is an extension of the
substitution returned by W. The algorithm W9F is given in [Cho03b].

62 Venkatesh Choppella

Our goal is to show that ¢, E, s and 7 are related in the following manner: if
WSE(A e) = (t, E,s,7), then t is a variable in F, s is an mgu of E and 7 = s(t).
However, this statement needs to be strengthened before it can be proved as an
invariant of W5,

Lemma 3 (W*F invariants). Let e be an expression and A a type environ-
ment. If WSE(A,e) = (t, E,s,T), then

1. t € vars(E), s is an mgu of E, and s(t) = 7. Furthermore,
2. if o is any idempotent substitution such that vars(o) is disjoint from vars(E)—
FV(A), and W9E (0 A, e) = (t°, E7,5,7°), then s° is an mgu of oE.

The proof of invariant (2) relies on Theorem 1 (details are in [Cho03b]). The
invariants of W% are used to relate W and WE:

Theorem 2 (Relation between W and WF). Let e be an expression and A
a type environment:

1. If W(A,e) = (s,7), then WE(A,e) = (t, E), E is unifiable with an mgu s',
s is a restriction of ', and §'(t) = 7.

2. If WE(A e) = (t,E) and E is unifiable with mgu s, then W (A, e) = (s,)
for some s and T such that s is a restriction of s’ and s'(t) = .

In W, not all locations of a program are decorated with type variables. This
is why the substitution s returned by W is a restriction of the substitution s’
returned by WF,

4.2 Constructive Interpretation of Non-genericity

The algorithm WF still has one instance where a substitution is applied to a
type environment (line 25, Figure 5) in order to compute the generic variable set
a = vars(ty) — FV(s; A). To eliminate it, we employ the well-known implementa-
tion trick of computing « as the difference between vars(ry) and the non-generic
variables 5 = wars(ri) N FV(spA). This trick relies on the following informal
observation: a variable § of vars() is non-generic if it can be reached from some
type variable in A in the “currently computed unification closure of the unifica-
tion graph constructed so far.” Using the results of Section 2.2, this statement
can be formalized and tightened. Since sy is an mgu of Ej, and 8 € ind(sy, Ey),
by Lemma 2, each non-generic variable 3 € 3 is in reachable(Ey,, FV(A)). Hence,
for each B € 3, there is a type variable t € FV(A) such that Ey =t ~» (. This
characterization is constructive because there is a unification path witnessing the
reachability of 8. It also immediately implies that ¢ € vars(Fy), and thus reveals
the following two bounds on the search for the non-generic variables of 7y:

1. the type equation space in which to determine the reachability is bounded
by Ek.

2. the set of type variables in FV(A) from which to search for reachability to
variables in 75, is bounded by FV(A) N vars(Ey).

Polymorphic Type Reconstruction Using Type Equations 63

Ezample 6. Consider the invocation WE(Ay, e4) in the computation WE(0), eg)
of Example 5. e4 is the subexpression Ay x5. Qg 27 xs of ep, and Ay = [z : t1].
This invocation returns (t4, E4) (line 22, Figure 5), where Ej is the type equation
set {d,e, f,g}. The mgu sy of E4 maps t1,t; and t7 to t5 — te, and maps tg to
t5. Since both s4(t1) and 74 = s4(ts) (line 24) are equal to t5 — tg, vars(Ts) —
FV(s4(A4)) = 0 (line 25). This means that both ¢5 and ¢ occurring in 74 are
non-generic type variables.

Unification paths from the type variable ¢; of the A-bound variable z provide
a constructive explanation of the non-genericity of ¢5 and ts. These paths were
already identified in Example 2. While searching for paths from the free variables
of the type environment A4, due to observation (1), we can limit our search for
reachability to E4. The type environment A, contains only [z : ¢1]. In general,
though, the binding of z could be nested arbirtrarily deep, making A, much
larger. Due to observation (2), the search for source vertices of the unification
paths needs to consider only those free variables in the type environment Ay
that occur in Fjy.

5 Using WP for Source-Tracking Type Errors

Any ordinary unification algorithm can be used to compute the mgu (line 23,Fig-
ure 5) in WE. However, when the unification source-tracking algorithm of [CHO3]
is used, WF can report type equation slices causing a type error. A type error
in Damas-Milner is signaled by non-unifiability of a system of type equations,
and the unification source-tracking algorithm is designed to return the equation
slices generating the symptom of non-unifiability (clash or cycle).

Example 7. The expression e in Example 5 is untypable because the system of
equations Ey is non-unifiable. When the unification source-tracking algorithm
of [CHO3] is used as part of W% it signals non-unifiability and returns the
unification cycle j;° L5=1hhikk; witnessing this unification failure (see Exam-
ple 1). This path may be partitioned into the following type equation slices:
t1o z ti1 — O, to z ts — 04, t11 2 t; — 0. Each slice is obtained by erasing
(replacing by O’s) information not relevant to the type error. The type equation
slices obtalned by d1V1d1ng the unlﬁcatlon path witnessing the non—generlclty of

ts are t1 = t7, tr =tg — O, tg = t5 The corresponding slices for tg are t1 = t7,
7 =0 —ts.

Type equation slices by themselves are only partly useful for type error diag-
nosis. We want to be able to identify the slices of the source program contributing

to the type error. In the next few sections, we present a framework for computing
program slices from type equation slices.

5.1 Syntax Equations

We express the syntactic relation between locations of a program expression us-
ing a system of syntax equations, inspired by the flat system formalism for set

64 Venkatesh Choppella

equations of Barwise and Moss [BM96]. Syntax equations encode constraints be-
tween various locations of a program. They are a more expressive alternative to
using locations as units of program slicing information. Syntax equations are ei-
ther local, relating an expression to its immediate subexpressions, or referential,
in which a variable occurrence refers to its binding location. Each location ¢ with
constructor f and children at locations 41, .. .4, is represented by the equation
i = f(i1,...,in). BEach variable reference at location ¢ to a A-bound (respec-
tively let-bound) variable at location j is represented by the syntax equation
i = Avar(j) (respectively i = letvar(j)).

Ezxample 8. The decorated expression A\g z1. leto y3 = A4 5. Qg 27 xg in
@g y109 y11 of Example 5 yields the following syntax equations: The lhs of each
equation the is the subexpression at which the equation was generated.

0=A(1,2) 2 = let(3,4,9) 4 = \(5,6)
6 = Q(7,8) 7 = var(l) 8 = var(h)
9 =@(10,11) 10 = letvar(3) 11 = letvar(3)

5.2 A Simple Constraint Generation Relation

We relate each type equation to its source information by defining a constraint
generation relation relating the syntax equation at location 4 of a subexpression
to the (new) type equations generated by W¥ at i. Each element of the constraint
generation relation is of the form “syntax equation = type equation”.

Ezxample 9. The constraint generation relation for the decorated expression e of
Example 8 is given below:

0 =A(5,6) =sa:ty =t;s >ts 2 =let(3,4,9) =>b:ts =t
2 =let(3,4,9) => city =14 4 =X(5,6) =>d:ity =t5—tg
6 =Q(7,8) =se:it; =ts—ts T =xar(l) = f:tr =1
8 =\var(5) =>g:its —t; 9 =@(10,11) = h:t1o = t1; — to
10 =letvar(3) = j:tio=ts —ts 1l=letvar(3) = k:t11 = t5 — to

The type equation slices causing the type error in e and the syntax equation
slices deriving them are:

t1y — O 10 = letvar(3) = t10 . ts — O
ts — O

O = @(10, 11) = 119
11 = letvar(3) = t13

[~ [

5.3 Limitations of the Simple Constraint Generation Relation

The Avar and local syntax equations generate type equations that are linear
(each type variable occurs just once). Furthermore, the type variables in these
type equations refer to locations occurring in the corresponding syntax equations.
This is, however, not true at let variable references. Consider Example 9 in which

Polymorphic Type Reconstruction Using Type Equations 65

the type equations generated at locations 10 and 11 contain variables ¢5 and tg
not occurring in the corresponding syntax equations. In general, however, type
equations at references to let bindings could contain newly cloned generic type
variables not occurring anywhere before. The simple generation relation shown
here is inadequately equipped to trace the origin of generic type variables. This
problem will be addressed in a successor paper [Cho04] where a framework for
expressing success proofs (why a type variable is mapped to a certain type by a
substitution) will be presented.

6 Related Work

The problem of type error diagnosis has received much attention. A more detailed
survey of related work is reported elsewhere [Cho03b].

Lee and Yi [LY98] present a top-down variant of algorithm W that relies
on eager application of intermediate substitutions. They prove that this eager
application not only generates better error messages, but that their algorithm
halts sooner than W for untypable programs. Our algorithm W¥ fails later
than W does, but when used with the unification source-tracking algorithm
of [CHO3], returns the set of type equations slices that led to the failure. The
algorithm Uap of Yang et al. [YTMWO0O0] depends on unifying type assumption
environments. McAdam [McA98] uses a special algorithm for unifying substi-
tutions. Our approach of unifying type equations is more natural and simpler.
McAdam [McAO0O] uses an annotated graph structure to directly store program
source information with the unification graph. In contrast, our approach sepa-
rates the extraction of type equation slices (using unification source-tracking)
with the extraction of program slices from the type slices (using the constraint
generation relation). Haack and Wells [HWO03] focus on the generation of mini-
mal program slices which combines the use of a novel unification algorithm with
a constraint collecting algorithm due to Damas [Dam85]. Their analysis of type
diagnosis is inspired by intersection types, while the recent work of Neubauer
and Thiemann [NT03] employs disjoint unions.

Trace-based approaches for type error diagnoses have also been suggested.
Early work here is Maruyama et al. [MMA92]. Their trace information is un-
fortunately too closely dependent on the order of the unifications performed.
Recently, Heeren et al. [HHS03] have proposed the use of type inference di-
rectives and specialized type rules to control the order of unification and type
inference. Our approach, on the other hand, is based on tracing inferences in
the connectivity space of the term equation graph rather than the execution
sequence of the reconstruction algorithm.

The early work of Wand [Wan86] and Johnson and Walz [JW86,Wal89] cor-
rectly identified that the root of the type error problem lay in the source-tracking
of unification. Their work focused on retrofitting unification algorithms with
source-tracking information, but lacked a formal basis. There has also been a
considerable effort in the area of type explanation, where the focus is to provide
human readable analyses of type errors, often in an interactive environment that

66 Venkatesh Choppella

sometimes includes visual navigation of the type graph annotated with various
entities [BS94,DB96,YMO00,Chi01]. Our approach for computing slicing infor-
mation has a more formal basis: the unification paths used in our framework
encode proofs in the unification path logic PV introduced in [CH03]. Other for-
mal approaches for include the unification logics of Le Chenadec [LC89] and the
pushdown automata of Cox [Cox87].

Remy [Rém92] proposed an improvement in the search for non-generic vari-
ables using a ranked variant of the Damas-Milner based on levels of nesting of
let constructs. In our approach, non-genericity is constructively demonstrated
using unification paths. The unification path formalism is also simpler and ties
in more naturally with our overall framework for type and error reconstruction.

7 Conclusions and Future Work

We have argued that substitution-based type reconstruction algorithms are lim-
ited in their ability to effectively track the source of type errors. This is because
substitutions fail to preserve the type equations that they solve. We have formal-
ized a sequentiality principle for unifier composition. This formalism sheds light
on how to obtain the type equation based type reconstruction algorithm W¥. We
believe that W ¥ is easier to understand and reason with than other algorithms
implementing Damas-Milner. We have used the framework of unification paths
developed earlier to build a constructive account of the non-genericty of type
variables. We have introduced syntax equations as a new syntactic formalism for
expressing program slicing. We have introduced a simple constraint generation
relation to relate syntax equations to type equations. W ¥, the constraint gener-
ation framework, and the unification source-tracking algorithm developed earlier
together constitute a simple framework for source-tracking type errors. We have
implemented this framework in Scheme for a mini-ML prototype [Cho03a.

A central feature of Damas-Milner is the controlled cloning of existing type
variables to create generic type. The origin of these generic type variables, can-
not, however, be accurately traced by the constraint generation relation de-
scribed. This problem is addressed in a forthcoming paper [Cho04]. The algo-
rithm W¥ is defined on the core subset of ML. Considerable work is needed to
extend this algorithm to the large type systems of current day functional pro-
gramming languages which typically support features like polymorphic recur-
sion, subtyping, type classes, overloading, reference types etc. Also, our program
slicing information is currently text-based. A visual front-end for viewing slic-
ing information would be very useful. We are currently developing a graphical
front-end for WF using existing graph displaying packages.

References
[BM96] J. Barwise and L. Moss. Vicious Circles. CSLI, 1996.

[BS94] M. Beaven and R. Stansifer. Explaining type errors in polymorphic lan-
guages. ACM Letters on Programming Languages, 1994.

[Car87]

[CF58]

[CHO3]

[Chi01]

[Cho02]

[Cho03a]

[Cho03b]

[Cho04]

[Cox87]
[Dam85)
[DBYG]

[DMS82]

[Hen93]

[HHS03]

[Hin69]

[HW03]

[TWS6)]

[KMM91]

Polymorphic Type Reconstruction Using Type Equations 67

L. Cardelli. Basic polymorphic typechecking. Science of Computer Pro-
grammang, 8:147-172, 1987.

H. B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland,
1958.

V. Choppella and C. T. Haynes. Source-tracking Unification. In Franz
Baader, editor, Proceedings of 19th International Conference on Automated
Deduction, CADE-19, Miami Beach, USA, number 2741 in Lecture Notes
in Artificial Intelligence, pages 458-472. Springer, 2003.

Olaf Chitil. Compositional explantion of types and debugging of type
errors. In Sizth ACM SIGPLAN International Conference on Functional
Programming (ICFP’01). ACM Press, September 2001.

Venkatesh Choppella. Unification Source-tracking with Application to Di-
agnosis of Type Inference. PhD thesis, Indiana University, August 2002.
TUCS Tech Report TR566.

Venkatesh Choppella. An implementation of algorithm of W,
http://wuw.iiitmk.ac.in/hyplan/choppell/WE.tar.gz, October 2003.
Venkatesh Choppella. Polymorphic Type reconstruction using type equa-
tions (full version with proofs). Technical Report SP-06, Indian Institute
of Information Technology and Managament, Kerala, Technopark, Thiru-
vananthapuram, Kerala, October 2003.

Venkatesh Choppella. Source-tracking Damas-Milner using unification
path embeddings. Technical report, Indian Institute of Information Tech-
nology and Management, Kerala, Technopark, Thiruvananthapuram, Ker-
ala, 2004. In preparation.

P. T. Cox. On determining the causes of non-unifiability. Journal of Logic
Programming, 4(1):33-58, 1987.

L. Damas. Type assignment in Programming Languages. PhD thesis, Uni-
versity of Edinburgh, April 1985.

Dominic Duggan and Frederick Bent. Explaining type inference. Science
of Computer Programming, 27(1):37-83, July 1996.

L. Damas and R. Milner. Principal type-schemes for functional languages.
In Proc. 9th ACM Symp. on Principles of Programming Languages, pages
207-212, January 1982.

F. Henglein. Type inference with polymorphic recursion. ACM Transac-
tions on Programming Languages and Systems, 15(2):253-289, April 1993.
Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the
type inference process. In Proceedings of the eighth ACM SIGPLAN in-
ternational conference on Functional programming, pages 3-13, Uppsala,
Sweden, August 2003. ACM Press.

R. Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:29-60, December
1969.

Christian Haack and Joe Wells. Type error slicing in higher order poly-
morphic languages. In Proc. of Theory and Practice of Software (TAPAS-
2003). Springer, 2003.

G. F. Johnson and J. A. Walz. A maximum-flow approach to anomaly
isolation in unification-based incremental type inference. In Proceedings of
the 13th ACM Symposium on Programming Languages, pages 44-57, 1986.
P. C. Kanellakis, H. G. Mairson, and J. C. Mitchell. Unification and ML
type reconstruction. In J.L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in honor of Alan Robinson, pages 444-478. MIT Press, 1991.

68 Venkatesh Choppella

[LC89)

[LY9S]

[McA9g]

[McA00]

[Mil78]

[MMA92]

[MTHO0]

[NT03]

[PJH99)

[PWTg]
[Rém92]
[Wal89)
[Wan86]
[Wan87]

[Wel02]

[YMOO]

P Le Chenadec. On the logic of unification. Journal of Symbolic computa-
tion, 8(1):141-199, July 1989.

Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic
type inference algorithm. ACM Transactions on Programming Languages,
20(4):707-723, July 1998.

Bruce J. McAdam. On the unification of substitutions in type inference.
In Kevin Hammond, Anthony J. T. Davie, and Chris Clack, editors, Im-
plementation of Functional Languages, volume 1595 of Lecture Notes in
Computer Science, pages 139-154. Springer-Verlag, September 1998 1998.
B. McAdam. Generalising techniques for type debugging. In Phil Trinder,
Greg Michaelson, and Hans-Wolfgang Loidl, editors, Trends in Functional
Programming, pages 49-57. Intellect, 2000.

R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

H. Maruyama, M. Matsuyama, and K. Araki. Support tool and strategy
for type error correction with polymorphic types. In Proceedings of the Six-
teenth annual international computer software and applications conference,
Chicago, pages 287-293. IEEE, September 1992.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

Matthias Neubauer and Peter Thiemann. Discriminative sum types locate
the source of type errors. In Proceedings of the eighth ACM SIGPLAN in-
ternational conference on Functional programming, pages 15—26, Uppsala,
Sweden, August 2003. ACM Press.

S. Peyton-Jones and J. Hughes (Eds.). Haskell 98: A non-strict, purely
functional language, February 1999.
http://www.haskell.org/onlinereport.

M. Paterson and M. Wegman. Linear unification. Journal of Computer
and System Sciences, 16(2):158-167, 1978.

D. Rémy. Extension of ML type system with a sorted equation theory on
types. Technical Report 1766, INRIA, October 1992.

J. A. Walz. Extending Attribute Grammars and Type Inference Algorithms.
PhD thesis, Cornell University, February 1989. TR 89-968.

M. Wand. Finding the source of type errors. In 13th Annual ACM Symp.
on Principles of Prog. Languages., pages 38—43, January 1986.

M. Wand. A simple algorithm and proof for type inference. Fundamenta
Informaticae, 10:115-122, 1987.

J. B. Wells. The essence of principal typings. In Proc. 29th Int’l Coll.
Automata, Languages, and Programming, volume 2380 of LNCS. Springer-
Verlag, 2002.

Jun Yang and G. Michaelson. A visualisation of polymorphic type checking.
Journal of Functional Programming, 10(1):57-75, January 2000.

[YTMWO00] Jun Yang, Phil Trinder, Greg Michaelson, and Joe Wells. Improved type

error reporting. In Proceeding of Implementation of Functional Languages,
12th International Workshop, pages 71-86, September 2000.

Correctness of Non-determinism Analyses
in a Parallel-Functional Language*

Clara Segura and Ricardo Pena

Departamento de Sistemas Informaticos y Programacién
Universidad Complutense de Madrid, Spain
{csegura,ricardo}@sip.ucm.es

Abstract. The presence of non-determinism in the parallel-functional
language Eden creates some problems. Several non-determinism analyses
have been developed to determine when an Eden expression is sure to
be deterministic, and when it may be non-deterministic. The correctness
of these analyses had not been proved yet. In this paper we define a
“maximal” denotational semantics for Eden in the sense that the set of
possible values produced by an expression is bigger than the actual one.
This semantics is enough to prove the correctness of the analyses. We
provide the abstraction and concretisation functions relating the con-
crete and abstract values so that the determinism property is adequately
captured. Finally we prove the correctness of the analyses with respect
to the previously defined semantics.

1 Introduction

The presence of non-determinism in the parallel-functional language Eden cre-
ates some problems: It affects the referential transparency of programs [11] and
invalidates some optimizations done in the Glasgow Haskell Compiler (GHC)
[10]. Three non-determinism abstract interpretation based analyses have been
defined to determine when an Eden expression is sure to be deterministic, and
when it may be non-deterministic [7,8]. They have been formally related and
compared with respect to expresiveness and efficiency [5].

However the correctness of these analyses had not been proved yet as there
was no appropriate denotational semantics for Eden including non-determinism.
Very recently it has been published in our group a complete denotational seman-
tics [3] for Eden based on continuations. There, non-determinism is expressed
by the fact that, after evaluating an expression, a process may arrive to a set
of different states, so that several continuations are possible. Unfortunately this
semantics is not still appropriate for our purposes: On the one hand it provides
lots of details that would obscure the proof of correctness. On the other, the set
of states a process may arrive to do not constitute a mathematical domain and
this is essential when abstract interpretation is used.

So, the first contribution of this paper is the definition of an appropriate deno-
tational semantics, in one sense simpler and in another sense more complex than

* Work partially supported by the Spanish project TIC 2000-0738.

P. Trinder, G. Michaelson, and R. Pena (Eds.): IFL 2003, LNCS 3145, pp. 69-85, 2004.
© Springer-Verlag Berlin Heidelberg 2004

70 Clara Segura and Ricardo Pena

that of [3]. Moreover, as concurrency and parallelism aspects are abstracted away,
the non-determinism analyses would also be correct for any non-deterministic
functional language whose semantics is (upper) approximated by this one. It
is a plural semantics in the style of [12] but with higher order and algebraic
types incorporated. The domains of values are defined by means of Hoare pow-
erdomains considering that the behaviour of the non-deterministic operator is
near to angelic non-determinism. To our knowledge, this is the first time that
a powerdomain-based non-deterministic semantics including higher-order values
is defined. It is not the actual semantics of Eden but an upper approximation
to it in the sense that, if an Eden expression e may evaluate to value v, then v
is included in the set s denoted by e in the semantics, but s may include values
that the implementation will never arrive to. However, this semantics is enough
to prove the correctness of the analyses.

The second contribution of the paper is the proof of correctness itself. We pro-
vide the abstraction and concretisation functions relating the concrete and ab-
stract values so that the determinism property is adequately captured. We prove
that they form a Galois connection and then we prove the correctness of the anal-
yses with respect to the semantics. The techniques we use are rather standard in
the abstract interpretation area but the problem addressed — non-determinism
analysis with functional domains, denotational semantics with Hoare higher-
order powerdomain — and the proof itself are new.

The plan of the paper is as follows. In Section 2 we describe Eden and the
non-determinism analyses that have been defined for it. In Section 3 we present
the denotational semantics including non-determinism. Finally, in Section 4 cor-
rectness of the analyses is formally proved.

2 Non-determinism Analyses for Eden

2.1 Eden in a Nutshell

The parallel-functional language Eden extends the lazy functional language Has-
kell by constructs to explicitly define and communicate processes. The three
main new concepts are process abstractions, process instantiations and the non-
deterministic process abstraction merge.

A process abstraction expression process x -> e of type Process a b defines
the behaviour of a process having the formal parameter x: :a as input and the ex-
pression e: :b as output. An instantiation is achieved by using the predefined infix
operator (#) :: Process a b -> a -> b. Process abstractions of type Process a
b can be compared to functions of type a -> b, the main difference being that
the former, when instantiated, are executed in parallel. Process instantiations
can be compared to function applications: Each time an expression el # e2 is
evaluated, a new parallel process is created to evaluate (el e2).

The evaluation of an expression el # e2 leads to the dynamic creation of a
process together with its interconnecting communication channels. The instan-
tiating or parent process will be responsible for evaluating and sending e2 via an
implicitly generated channel, while the new child process will evaluate first the

Correctness of Non-determinism Analyses in a Parallel-Functional Language 71

expression el until a process abstraction process x -> e is obtained and then
the application (\ x -> e) e2, returning the result via another implicitly gener-
ated channel. The instantiation protocol deserves some attention: (1) Closure el
together with the closures of all the free variables referenced there (its whole en-
vironment) are copied, in the current evaluation state (possibly unevaluated), to
a new processor, and the child process is created there to evaluate the expression
(\ x -> e) e2, where e2 must be remotely received. (2) Expression e2 is eagerly
evaluated in the parent process to normal form. The result is communicated to
the child process as its input argument. (3) The normal form of the value (\ x
-> e) e2 is sent back to the parent. Normal forms are full, except for lambdas
where they are weak ones. For input or output tuples, independent concurrent
threads are created to evaluate each component.

Processes communicate via unidirectional channels which connect one writer
to exactly one reader. Once a process is running, only fully evaluated data objects
are communicated. The only exceptions are lists, which are transmitted in a
stream-like fashion, i.e. element by element. Each list element is first evaluated
to full normal form and then transmitted. Concurrent threads trying to access
input which is not available yet, are temporarily suspended. This is the only way
in which Eden processes synchronize.

Lazy evaluation is changed to eager evaluation in two cases: Processes are
eagerly instantiated, and instantiated processes produce their output even if it
is not demanded. These modifications aim at increasing the parallelism degree
and at speeding up the distribution of the computation. The rest of the language
is as lazy as Haskell is. In general, a process is implemented by several threads
concurrently running in the same processor, so that different values can be pro-
duced independently. The concept of a virtually shared global graph does not
exist. Each process evaluates its outputs autonomously.

Non-determinism is introduced in Eden by means of a predefined process
abstraction merge :: Process [[al] [a]l which fairly interleaves a set of input
lists, to produce a single non-deterministic list. Its implementation immediately
copies to the output list any value appearing at any of the input lists. So, merge
can profitably be used to quickly react to requests coming in an unpredictable
order from a set of processes. This feature is essential in reactive systems and
very useful in some deterministic parallel algorithms. Eden is aimed at both
types of applications.

2.2 A Simplified Language

In the next section a denotational semantics is defined for a simplified version of
Eden, see Figure 1, in order to prove the correctness of several non-determinism
analyses. The language is an extended simplification of Core-Haskell [9], a simple
functional language with second-order polymorphism. As Eden is an extension
of Haskell, it is obviously polymorphic. But in order to simplify the rest of the
paper, we have removed this aspect of the language. So there are neither type
abstractions nor type applications.

72 Clara Segura and Ricardo Pena

prog — bindy;...;bindy,
bind — v = expr {non-recursive binding}
| rec v1 = expr,;...;vm = expr,, {recursive binding}
erpr — erpr T {application to an atom}
| Av.expr {lambda abstraction}
| case expr of alts {case expression}
| let bind in expr {let expression}
| (z1,...,%m) {tuple}
| Cz1...2m {saturated constructor application}
| © {atom: variable v or literal k}
| merge {non-determinism operator}
alts — Calty;...; Calty,; m >0
| TAlt
TAlt — (vi,...,vm) — expr m > 0 {tuple alternative}

Calt — C vy ...vy — expr m > 0 {algebraic alternative}

Fig. 1. A simplified version of a parallel functional language.

The variables contain type information, so we will not write it explicitly in
the expressions. When necessary, we will write e :: ¢ to make explicit the type
of an expression. A type may be a basic type K, a tuple type (t1,...,tm), an
algebraic (sum) type T, or a functional type t; — to.

Process abstractions process v — e and process instantiations e # x do not
appear in the language. This simplification is motivated by an approximation to
the semantics explained in Section 3.2. When an unevaluated non-deterministic
free variable is duplicated in two different processes, it may happen that the
actual value computed by each process is different. However, within the same
process, a variable is evaluated at most once and its value is shared thereafter.
Consequently this means that variables are definite (each occurrence denotes
the same single value) within the same process and are not definite (different
occurrences may denote different values) within different processes. In general,
in Eden the unfoldability property does not hold (a variable cannot be replaced
by its definition, i.e. [(Az.e) €'] p # [e[e//x]] p), except in the case that the
unfolded expression is deterministic. This is a consequence of having definite
variables within a process.

So, there are some occurrences that surely have the same value but others may
have different values. The following example illustrates this situation. Assume
ne is a non-deterministic expression in

let v = ne in (p1 v)#v + (p2 v)#v

The second and fourth occurrences of v necessarily have the same value as they
are evaluated in the parent process. However the first and third occurrences may
have different values as v is copied twice and evaluated in two children processes.
So, an upper approximation is obtained by considering that

! Defined by data T' = C ti1 ..o ting |- | Cm tmi - tmny, -

Correctness of Non-determinism Analyses in a Parallel-Functional Language 73

— All the occurrences of each variable may have a different value, i.e. all the
variables are non-definite.

— All functions behave as processes, and all function applications behave as
process instantiations. Consequently, we will only have syntactical lambda
abstractions and function applications with the semantics of process abstrac-
tions and process instantiations.

The semantics defined in Section 3.2 will make these assumptions.

As polymorphism is omitted, the merge operator is monomorphic, so we con-
sider the existence of an instance merge, for every type t. Additionally we sim-
plify this operator so that it merges just two lists of values: merge, : [t] — [t] —
[t]. Eden’s merge is more convenient since it may receive as arguments any finite
number of lists, but it can be simulated by the simplified one, merge,.

2.3 Motivation for the Analyses

The non-deterministic process merge may be used to create non-deterministic
expressions and to define non-deterministic functions. Subsection 2.4 introduces
several analyses to detect at compile time these non-deterministic expressions.
The analyses annotate the expressions with a mark which, in the simplest case is
just d or n. The first one means that the expression is sure to be deterministic,
while the second one means that it may be non-deterministic. So, a possible
better name for these analyses would be determinism analyses because the sure
value is the deterministic one. We found at least three motivations for developing
these analyses.

On the one hand, to annotate the places in the text where equational rea-
soning may be lost due to the presence of non-determinism. This is important
in an optimizing compiler such as that of Eden built on top of GHC [9]. A lot
of internal transformations such as inlining or full laziness are done on the as-
sumption that it is always possible to replace equals by equals. This is not true
when the expressions involved are non-deterministic. For instance, the full lazi-
ness transformation moves a binding out of a lambda when it does not depend
on the lambda argument. So, the expression

let f=MXz.let y=-e1 in e
in e3

when e; does not depend on z is transformed to

let y=e1
in let f = Az.e2 in e3

If ey is non-deterministic, this transformation restricts the set of values the
expression may evaluate to, as now expression e; is evaluated only once instead
of many times.

A second motivation is to be able to implement in the future a semantics
for Eden, different from the currently implemented one, in which all variables

74 Clara Segura and Ricardo Pena

will be guaranteed to be definite, i.e. they will denote the same value in all
the processes. To this aim, when a non-deterministic binding is to be copied to
a newly instantiated process, the runtime system will take care of previously
evaluating the binding to normal form. Doing this evaluation for all bindings
would make Eden more eager than needed and would decrease the amount of
parallelism as more work would be done in parent processes. So, it is important
to do this evaluation only when it is known that the binding is possibly non-
deterministic.

A third motivation could be to be able to inform the programmer of the
deterministic expressions of the program. In this way, the part of the program
where equational reasoning is still possible would be clearly determined. A first
step towards this aim is doing the analysis at the core language level. A transla-
tion of the annotations to source level would also be required in order to provide
the programmer with meaningful information. For the moment we have not im-
plemented this translation.

2.4 A Hierarchy of Analyses

Three non-determinism analyses have been developed to determine when an
Eden expression is sure to be deterministic and when it may be non-determi-
nistic. In [7], two different abstract interpretation based analyses were presented
and compared with respect to expressiveness and efficiency. The first one [-],
was efficient (linear) but not very powerful, and the second one [-], was powerful
but less efficient (exponential). In [8] an intermediate analysis [-], and its im-
plementation (written in Haskell) were described. Such analysis is a compromise
between power and efficiency (cubic). Its definition is based on the second anal-
ysis [-],. The improvement in efficiency is obtained by speeding up the fixpoint
calculation by means of a widening operator wop, and by using an easily com-
parable representation of functions. By choosing different operators we obtain
different variants of the analysis [-],"””. That paper described one particular
variant []," in detail.

In [5], the three analyses were formally related so that they become totally
ordered by increasing cost and precision. It was shown that all variants of the
third analysis are safe approximations to the second analysis and that the first
analysis is only a safe aproximation to those variants of the third analysis sat-
isfying a particular property. An example was given to show the differences in
precision between [-],, [-], and [];". In Figure 2 we show the relation between
the first and second analyses, and some variants of the third one.

In this paper we only summarize the second analysis as we are going to prove
its correctness with respect to the Eden semantics. The previous results lead us
to correctness of the whole hierarchy of analyses with respect to it.

In Figure 3 the abstract domains for [-], are shown. There is a domain Basic
with two values: d represents determinism and n possible non-determinism, with
the ordering d C n. This is the abstract domain corresponding to basic types
and algebraic types. The abstract domains corresponding to a tuple type and a
function/process type are respectively the cartesian product of the components’

Correctness of Non-determinism Analyses in a Parallel-Functional Language 75

[
|
[1s™
e AN Basic = {d,n} where d C n
[ch [[.]]SW gzK = Dop :DBasic 5
2(t1,.tm) — 2t X ... X 2t
[[']]le / [[%]1 Doty .ty = [D2¢; — Da,]

Fig. 2. A hierarchy of analyses. Fig. 3. Abstract domains for the second analysis.

], p2 = p2(v)

k]z p2=d

(xlv .- '7:17771)]]2 p2 = (lle]]Z P2y [[Im]]2 PZ)
Cx1...xm]y p2 = [_| o1, ([xi]y p2) where a; :: t;

[
[
[
[
le 2], p2 = ([e], p2) ([2], p2)

[Mv.e], p2 = Az € Doy, .[e], p2 [v— z] where v :: t,

[merge:], p2 = Az1 € Basic.Az2 € Basic.n

llet v = ¢ in '], p2 = [']; p2 [0 — [€] pa

llet rec {v; = ¢} in '], po — [¢'], (fix (Aphepz o0 [ed], o)
[

case ¢ Of (1,...,vm) — €'l pa = [€'], p2 [0 mi([el, po)
pie(n) if [e], p2 =n
[case e of Ci vij — €], p2 = { | | [ei], pai otherwise

i

where p2; = p2 [vij = pe,; ()], vij == tij, et

Fig. 4. Abstract interpretation [-],.

domains and the domain of continuous functions between the domains of the
argument and the result. In [7] polymorphism was also included, but in this
paper we do not treat it.

In Figure 4 the analysis is shown. It is an abstract interpretation based
analysis in the style of [1]. We outline here only some cases. The interpretation
of a tuple is the tuple of the abstract values of the components. Functions are
interpreted as abstract functions. So, applications are interpreted as abstract
functions applications. The interpretation of a constructor application belongs
to Basic, obtained as the least upper bound (lub) of the components’ abstract
values. But each component z; :: t; has an abstract value belonging to Dy, ,
that must be first flattened to a basic abstract value. This is done by a function
called the flattening function ¢¢ : Do, — Basic, defined in Figure 5. The idea is
to flatten the tuples (by applying the lub operator) and to apply the functions
to deterministic arguments.

In a recursive let expression the fixpoint can be calculated by using Kleene’s
ascending chain. We have two different kinds of case expressions (for tuple and
algebraic types). The more complex one is the algebraic case. Its abstract value
is non-deterministic if either the discriminant or any of the expressions in the
alternatives is non-deterministic. Note that the abstract value of the discrimi-
nant e, let us call it b, belongs to Basic. That is, when it was interpreted, the

76 Clara Segura and Ricardo Pena

¢¢ : Doy — Basic e Basic — Do,
¢K = d)T = idBasic MK = pT = 1dBasic
Oltryertm) (€15 s Em) = |_| o, (ei) H(tysoortan) (B) = (126, (B), -, pity, ()
)) = [32 € Davima(m) it b=n
bt1—t2 () = Peo (f (1t (d))) Ha—20) =19\, ¢ Dayy ity (P1,(2)) if b=d

Fig. 5. Functions ¢+ and p.

Ax = P([K]) where [Int] = Z .
A(tl,.“,tm) =Ay X ... X Ay,
Ar =P([T])
where [T] = ®i2.1(Ci x X;'LLIAtij)J—7 data T =C1 tir.. . tin, |- |Cm tm1 -+ b,
Aty = [Ar, — Ag,]

Fig. 6. Domain of values.

information about the components was lost. We want now to interpret each al-
ternative’s right hand side in an extended environment with abstract values for
the variables v;; :: t;; in the left hand side of the alternative. We do not have
such information, but we can safely approximate it by using the unflattening
function p; : Basic — Dy, defined in Figure 5. Given a type t, it unflattens a
basic abstract value and produces an abstract value in Ds,. The idea is to obtain
the best safe approximation both to d and n in a given domain. The flattening
and unflattening functions are mutually recursive. In [7] they were explained in
detail and an example was given to illustrate their definitions. They have some
interesting properties (e.g. they are a Galois insertion pair [2]), studied in [5].
Tuples are treated separately from algebraic types because we want the analysis
to be more precise here due to the use of tuples in Eden as input or output
channels of processes.

3 A Denotational Semantics for Non-determinism

3.1 The Domain of Values

To capture the idea of a non-deterministic value, the traditional approach is to
make an expression to denote a set of values. This is obvious for basic types such
as integers, but things get more complex when we move to structured types such
as functions or tuples. Should a functional expression denote a set of functions or
a function from sets to sets? Should a tuple expression denote a set of tuples or
a tuple of sets? Additionally, the denoted values should constitute a domain. In
the literature, three powerdomains with different properties have been proposed:
Hoare, Smyth and Plotkin powerdomains [12]. The first one models angelic or
bottom-avoiding nondeterminism (in which bottom is never chosen unless it is
the only option), the second one models demonic non-determinism (it chooses
bottom whenever it is a possible option) and the third one models erratic non-
determinism (in which bottom is an option as the other ones).

Correctness of Non-determinism Analyses in a Parallel-Functional Language 7

Regarding structured domains we have chosen a functional expression to
denote a single function from sets to sets. In this sense, the following two bindings

f1 = head(merge 1, 1 [A2.0][Ax.1])
f2 = \x.head (merge,,,[0][1])

will both denote the function A\x.{0, 1, L}. That is, the information whether the
non-deterministic decision is taken at binding evaluation time or at function
application time is lost. Non-deterministic decisions are deferred as much as
possible; in this example to function application time. This is consistent with
the plural semantics we have adopted for our language in Section 3.2: Several
occurrences of the same variable (let us say f1) may represent different values.

Regarding the selection of powerdomain, we have decided to use Hoare’s one.
This is consistent with the implementation of merge in Eden: If one of the input
lists is blocked (i.e., it denotes L), merge will still produce an output list by
copying values from the non-blocked list. Only if both lists are blocked will the
output list be blocked. Nevertheless, merge will terminate only when both input
lists terminate. This behaviour is very near to angelic non-determinism. If D
is a domain, P(D) will denote the Hoare powerdomain of D. First, a preorder
relation is defined in P(D) (all subsets of D) as follows:

ACpipy B iff Vae Adbe B.aEpbd
This preorder relation induces an equivalence relation = def C N 3 identify-
ing sets such as {0,1, L} and {0,1}. The Hoare powerdomain is the quotient
P(D)d:ef(P(D) — @)/ =. A property enjoyed by all elements of a Hoare powerdo-
main is that they are downwards closed, i.e. Vx € A,y Cp x = y € A.

In Figure 6, the domains of semantic values for every type are defined. Notice
that, for basic and constructed types, the domains consist of sets of values while
for tuples and functions, the domains consist of single values. In the definition
for constructed types, @ denotes the coalesced sum of (lifted) domains. Sets of
values are needed for the constructed types because non-deterministic values of
such types may contain several different constructors. However, those with only
one constructor could be treated as tuples.

If the constructed type is recursive, notice that the recursive occurrences
denote sets of values. For instance, a non-deterministic list would consist of a
set of lists. A non-empty list of this set would consist of a head value and a tail
value formed by a set of lists. Note also that the domain allows the existence of
infinite values as limits of their finite approximations.

3.2 A Maximal Semantics: Non-definite Variables

In Figure 7 a denotational semantics for Eden is given. There {v}* denotes the
downwards closure of a value, i.e. a set of values containing all values below v.
The environment p maps variables of type ¢ to values of their corresponding
non-deterministic domains A;. The semantic function [.] maps an expression of

78 Clara Segura and Ricardo Pena

[v] p = p(v)

%] p = {k}"

|I(.’E1, .. .,:Em)]] p= ([[1'1]] Py--ey [["‘Um]] p)
[Cai...am] p={C [z1] p... [zm] p}"
[Mv.e], p=As € Ay, .[e] p [v— s] where v :: t,

le =] p = ([e] p) ([] p)

[merge,] p = As1 € Apprs2 € Apy.[J{mergeS I Iz | lh € 51,12 € s2}
llet v=eine’] p=[e'] p v [e] p]

[let rec {v; =e;} in €] p =[] (fix (A\p".p [vi = [ei] p']))

[case e of (v1,...,vm) — €] p=[€'] p [v: = mi([e] p)]

£ O, v . _ J-Af, if [[6]] P = J-AT

lease e of Civiy = el P=""], {lex] plows = sis)™ | Ci 517 € el p} otherwise

Fig. 7. A denotational semantics for Eden.

mergeS 1L 1 ={1} mergeS L lo = {loH+L1}" mergeS Ih L ={li+HL1}"
mergeS [[|={[]}" mergeS [] la = {l2}" mergeS Iy [={l1}"
mergeS (s1:1ls1) (s2:1s2) = {s1: (Ul’elsl mergeS I’ (s2 :1s2)), 52 : (Ul’6152 mergeS (s1:1s1) I')}*
where 14+1 =1
[[HL=1
(zs:ass)H L =as: {wss'+HL | xss’ € wss}

Fig. 8. Non-determinism semantics.

type ¢t and an environment p to a value in A;. The only expression introducing
sets of values is merge,. Its behaviour is that of a lambda abstraction returning
all the possible interleavings of all pairs of input lists. The detail of the auxiliary
function mergesS is given in Figure 8.

These decisions configure a plural semantics for Eden as every occurrence of
the same variable within an expression is mapped to all possible values for that
variable (see definitions for let and lambda in Figure 7). This is not the actual
semantics of Eden, but just a safe upper approximation to it in the sense that the
set of possible values denoted by an expression is bigger than the actual one. As
an example, the expression let f = head(merge,;_, [x.0] [Az.1]) in (f 3) +
(f 4) in fact may only produce the values 0 or 2 while the approximated semantics
will say that it may also produce the value 1. It is maximal in the sense that all
variables are considered non definite, while in the actual semantics only those
variables duplicated in different processes may be non definite if they are non-
deterministic. Notice that with this approximated semantics unfoldability holds
although in the actual semantics this is not true. The denotation given to merge,
is also an upper approximation as the actual one only produces fair interleavings.

The reason for this maximal semantics is that, if we are able to show the
correctness of the analysis with respect to it, then the analysis will be correct
with respect to the actual semantics. We remind the reader that the sure value
is the deterministic one. If the analysis detects an expression as deterministic
then it should be semantically deterministic.

An exception is the algebraic case expression where the variables in the
right hand side of the alternatives are definite. The discriminant’s value is a

Correctness of Non-determinism Analyses in a Parallel-Functional Language 79

set that may contain different constructors, so we have to take the lub of all
the alternatives’ values that match them. As the discriminant is immediately
evaluated, the non-deterministic decision is immediately taken so that all the
occurrences of the same variable in the right hand side have the chosen value.

For example, let a type data Fool = C Int | C' Int and the values s; = { L,
C{0,1},C"{0, L}}, so ={L,C{1, L}, C{0, L}} and s, = {L,C{1, L},C{0, L},
C{0,1, L}}. Let an expression ¢’ = case e of C v — v+ v;C" v/ — v/ + 4. If [e]
p =51, then [¢] p={0,4, L}. Notice that so and s, are different: If [e] p = s2
then [e'] p ={0,2, L}, but if [e] p = sb, then [¢'] p = {0, 1,2, L}. This is because
the variables in the right hand side of a case alternative are definite. We could
have chosen another option when building the environments for the right hand
sides (see [6]) but this is nearer to the actual semantics. The rest of the rules are
self-explanatory.

4 Capturing the Determinism Meaning

4.1 Deterministic Values

In this section we are proving that [-], is correct with respect to the denota-
tional semantics presented in the previous section (see Theorem 1). In order to
establish the correctness predicate we need first to define the semantic property
we want to capture, that is the determinism of an expression. In Figure 9 the
boolean functions det; are defined. Given s € A;, det:(s) tells us whether s is a
deterministic value or not. A value of type K is deterministic if it is a set with
at most one element different from L (as L belongs to each s € Ak), which is
established by the function unit. A tuple is deterministic if each component is
deterministic. A constructed value s € Ar is deterministic if its elements differ-
ent from | (again L belongs to each s € Ar) have the same constructor, which
is established by the function one, and additionally the least upper bound of
the values in each component is deterministic. For example, values s;, s and
sh defined in Section 3.2 are non-deterministic: The first one because it has two
different constructors, and the other two because the least upper bound of the
first component, {0, 1, L}, is non-deterministic. The definition of det; in Figure 9
and the propositions below assume that there are not algebraic infinite values.
This is not a severe restriction as processes communicating infinite values will
not terminate and Hoare powerdomains ignores non-termination (L is included
in all values).

Finally, a function is deterministic if given a deterministic argument it pro-
duces a deterministic result.

Let us note that this semantical definition of determinism characterizes a
possibly non-terminating single value expression as being deterministic. This is
in accordance with the Hoare powerdomain semantics we have adopted produc-
ing Scott-closed sets: Where the actual semantics produces a single value, our
approximate semantics produces a non-singleton set because it always includes
L. That is, predicate det; characterizes determinism up to non-termination. No-
tice also that, if we eliminate L in the definitions of unit and one, then predicate

80 Clara Segura and Ricardo Pena

det i (s) = unit(s)
where wunit({L}) = true unit({z, L}) = true unit = false
det(ey .ty (515, 8m)) = /\Zl1 det, (ss)
™ dets, (U{s; | C S1...8m € 5,8 ::t;}) if one(s
detr(s) = 95[2816 oltileiwis!e D)
where one(s) =(s={L})V(3COVs €s.s # L =5 =Cs1...5m)
detr, 1, (f) = Vs € Ay, .dety, (s) = dete, (f(5))

Fig. 9. Semantic definition of determinism.

(6773 At — th
d if deti(s)
n otherwise
a(t1,~~~,tm)((517 ceey Sm)) = (O‘tl (51)7 ceey Qi (Sm))
d if detr(s)
n
)

otherwise

At : P(At) — th
Ai(8) = e e (s)

Fig. 10. Abstraction function.

det; characterizes real singleton sets in the basic type, tuples and algebraic type
cases, and functions mapping single values into single values in the functional
type case. Predicates det; have some properties (see [6]) we do not show here.

4.2 Abstraction and Concretisation Functions

In this section we define the abstraction A; and concretisation I'; functions that
relate the abstract and concrete domains, following the ideas in [1]. We will prove
that they are a Galois connection, a crucial property in the correctness proof.

The function A, is just an extension of a function «a; to Hoare sets by ap-
plying it to each element of the set and taking the lub. So «; will also be called
abstraction function. With this function, defined in Figure 10, we want to ab-
stract the determinism behaviour of the concrete values. It loses information, i.e.
several concrete values may have the same abstract value. In Figure 11 function
I} is defined. For each abstract value, it returns all the concrete values that can
be approximated by that abstract value. They are mutually recursive.

A value of type K or T is abstracted to d only if it is deterministic. The
abstraction of a tuple is the tuple of the abstractions. The abstraction of a
function f of type t; — t5 is a little more involved. It is an abstract function
taking an argument z € Do, . Such z represents several concrete values s; €
I';(z) whose abstract images are ay,(f(s1)). So the abstraction of the result is
the lub of these abstract images.

Correctness of Non-determinism Analyses in a Parallel-Functional Language 81

Iy : Doy — P(Ay)
_ JA{s€e Ak | unit(s)} ifb=d
T (b) = {P(AK)K T
Tyt (215 2m)) = {(51,. ., 8m) | ar,(s:) € 2:Vi € {1..m}}
_J{seAr | detr(s)} ifb=d
Pr®) =93 par) itb=n

Ftl"tQ (f#) = {f € Atl"tQ | Vs € Atl'at2 (f(v)) C f#(atl (3))}

Fig. 11. Concretisation function.

The concretisation function is defined so that it builds a Galois connection
with A, which implies that for each concrete value there may be several abstract
approximations but there exists only one best (least) approximation.

It can easily be proved that I} is well defined, i.e. it produces downwards
closed sets of concrete values. It can also be proved that for each type ¢, functions
ay, Ay and Ty are continuous. Both things are shown in [6].

The most important result in this section is that A; and I} are a Galois
connection (i.e. A;-I; C idp,, and I} - A; 2 idp(At)), which is equivalent to the
following proposition, that will be intensively used in the correctness proof.

Proposition 1 For each type t, z € Doy, and s € Ay s € ['(z) < au(s) C z.

This proposition can be proved by structural induction on t (see [6]).

Finally we present an interesting property that only holds when the concrete
domains of basic and algebraic types have at least two elements different from
L. In the following proposition we show that oy is surjective, i.e. each abstract
value is the abstraction of a concrete value, which in particular belongs to the
concretisation of that abstract value. This means that A; and I} are a Galois
insertion (A - Iy = idp,,).

Proposition 2 If all [K] and [T] have at least two elements different from L,
then for each type t and z € Dqy, there exists s € I'(z) such that au(s) = z.

This can be proved by structural induction on ¢ (see [6]). If the proposition
hypothesis about [K] and [T] does not hold then it is easy to see that all the
concrete values are abstracted to d and none to n. In fact we are avoiding the
Unit type. However this property is not necessary in the correctness proof.

4.3 A Proof of Partial Correctness

In this subsection we prove that [-], is correct with respect to the denotational
semantics: When the analysis tells that an expression is deterministic, then the
concrete value produced by the denotational semantics is semantically determin-
istic. Otherwise we do not know anything about it. We have to formally describe
this intuition. On the one hand, we said in Section 2.4 that u.(d) is the best safe
approximation to d in a given domain, so the analysis tells us that an expression

82 Clara Segura and Ricardo Pena

is deterministic when its abstract value is less than or equal to p;(d). On the
other hand the semantical determinism of a concrete value is established by the
predicate det;. So, the main correctness result is expressed as follows.

Theorem 1. Let p and p2 be two environments, such that for each variable
x i ty, ap, (p(x)) C pa(z). Then for each e :: t: [e]y p2 T pe(d) = det([e] p).

Notice that this only proves the partial correctness of the analysis with respect
to the actual semantics of Eden. This (not formally defined) semantics only pro-
duces non-singleton sets when the expression e contains at least one occurrence
of merge. If expression e completely terminates, then we can ignore the undefined
values in [e] p and then det:([e] p) amounts to saying that [e] p consists of a
single value, i.e. e is deterministic in the actual semantics sense.

The theorem is proved in two parts written as Propositions 3 and 4, shown
below. The first one tells us that all the values whose abstraction is below p(d)
are semantically deterministic. The second one asserts that the analysis is an
upper approximation to the abstraction of the concrete semantics. The proofs
use intensively some properties of ¢; and p; already shown in [5].

Proposition 3 For each type t, and s € Ay: ay(s) C py(d) < dety(s).

Proof 1 We use structural induction on t. The interesting case is the function
type, t =11 — ta. The rest are straightforward.

— (=).We have to prove that Vs € Ay, .dety, (s) = dety,(f(s)). So, let s € Ay,
such that dety, (s). We have that

0, (£(5)) € Uy e, (oo, (o @1 (F(51)) {5 € T (a (3))}

C ity (01, (o1, (5))) {au(f) E pu(d)}
C gty (@1, (11, (d))) {by i.h. on ¢; and monotonicity}
= Mty (d) {(bt C M = ZdBasic; by PI‘Op. Q(b) in [5}}

Consequently, by i.h. on ta we have dety,(f(s)).
— («=). We have to prove that Vz € Day,. [_|816Ft1 () %2 (f(51)) © piry (¢4, (2)).
Let z € Doy, . We distinguish two cases.
e 2L uy (d). Then

s1 €I, (2)
=y, (s1)C 2 {by Proposition 1}
= a, (s1) E pr, (d) {z £ pi, (d)}
= det, (f(s1)) {by i.h. on t; and det;(f)}

= o, (f(s1)) C puy(d) {by i.h. on a3}
= o, (f(51)) T pieo (01, (2)) {2 T pue, (d) and ¢y - p1y = idpasic }

o 2 IZ py, (d). In this case ¢y, (2) = n (by Proposition 3 in [5]). The propo-
sition holds trivially as ju,(n) is the top element in Doy, (by Proposition

2(d) in [5]).

d

Correctness of Non-determinism Analyses in a Parallel-Functional Language 83

Proposition 4 Let p and p2 be two environments, such that for each variable
x ity ap, (p(x)) T pa(z). Then for each expression e :: t: au([e]) p C [e], po.

Proof 2 We use structural induction on e. We show here only two interesting
cases. In the letrec case a double induction is necessary (see [6]).

—e=Cuwm ...y = T. We distinguish two cases. If ap([C z1...2n] p) =d
then it is trivial, as d is the bottom element in Basic.
If ar([C x1 ... 2m] p) = n, then —detr({C ([z1] p) ... ([zm] p)}*) by defi-
nition of az and [-]. In {C ([x1] p) ... ([xm] p)}* there is just one construc-
tor, so the only possibility for it to be non-deterministic, is that there exists
i € {1..m} such that ~dety,(U{s; | C s1...5m € {C ([z1] p) ... (Jzm] p)}*}),
i.e. such that —dety, ([z:] p). By Proposition 1, this implies that o, ([x:] p) ¥
w; (d) and consequently ¢+, (cou, (J:] p)) = n (by Proposition 3 in [5]), so

[Car...am]y p2 = |_|;n:1 ¢¢; ([], p2) {by definition of [-],}
I ¢, (an, ([25] p)) {by i.h. on t; and monotonicity}

=n {01, (o, ([2:] p)) = n}

—e = e ity — ta. By definition of [-] and oz we have to prove that
Us,en,, o) @ ([€'] plv = s1]) E [€], palv— 2]

If sy € I, (%) then ay, (s1) C z by Proposition 1, so p[x — s1] and pzv — z]

satisfy the theorem hypothesis about the environments. We can then apply

induction hypothesis on €' and obtain oy, ([e'] plv — s1]) T[]y p2lv — z].

O

5 Conclusions and Future Work

We have proved the correctness of a whole hierarchy of non-determinism analy-
ses for the parallel-functional language Eden. In order to do this, we have defined
first a denotational semantics for Eden where non-determinism is represented.
We have chosen to use a plural semantics in which non-deterministic choices for
variables are deferred as much as possible. A semantics nearer to the actual one
(within a single process) would have been a singular one in which environments
map variables to single values. This would reflect the fact that non-deterministic
choices are done at binding evaluation time instead of at each variable occur-
rence. For instance, a let-bound variable will get its value the first time it is
evaluated and this value will be shared thereafter by all its occurrences. In order
to consider all the possible values the variable can have, we build one environ-
ment for each of them:

[let v=ecine] p= |_| [e'] plv +— 2]
ze[e] »

The same would be true for case-bound and lambda-bound variables. We have
tried to define this singular semantics and things go wrong when trying to give

84 Clara Segura and Ricardo Pena

semantics to mutually recursive definitions. The traditional fixpoint computation
by using Kleene’s ascending chain gives a semantics more plural than expected.
For instance, in the definition

letrec [= head(mergerni—int 9] [Ax.0])
g = head(mergernt—int [f] [Mx.1])
in (f,9)

Kleene’s ascending chain will compute the following set of possible environments:

p={{fr2e{L}, g— N {L}}, {fr— A0}, g— Ax.{1}"},
{f — Xz{0}*, g — Az 0}*}, {f— Ax{1}*, g— Az {1}*},
{f — AzA{1}*, g— x{0}*} }

However, the lazy evaluation of the expression will never produce the fifth pos-
sibility. In [12] a singular semantics for a small non-deterministic recursive func-
tional language was defined. The problem with fixpoints did not arise there
because the language was extremely simple: Only one recursive binding was al-
lowed in the program and this had to be a lambda abstraction. Additionally, the
language was only first-order. The problem arises when there are at least two
mutually recursive bindings to non normal-form expressions. In order to define a
real singular semantics, we think that an operational approach should be taken,
similar to that of [4]. In this way, the actual lazy evaluation with its updating of
closures and sharing of expressions could be appropriately modeled. We forsee
to do it as future work.

Another extension of the present work is to include polymorphism in the
language, in the semantics and in the proof of correctness. The analyses originally
presented in [7, 8] already included this aspect.

References

1. G. L. Burn, C. L. Hankin, and S. Abramsky. The Theory of Strictness Analysis
for Higher Order Functions. In Programs as Data Objects, volume 217 of LNCS,
pages 42—62. Springer-Verlag, 1986.

2. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL’79, pages 269-282. ACM, 1979.

3. M. Hidalgo and Y. Ortega. Continuation Semantics for Parallel Haskell Dialects.
In APLAS’03, volume 2895 of LNCS, pages 303-321. Springer-Verlag, 2003.

4. J. Hughes and A. Moran. Making Choices Lazily. In FPCA’95, pages 108-119.
ACM Press, 1995.

5. R. Pena and C. Segura. Three Non-determinism Analyses in a Parallel-Functional
Language. Technical Report 117-01, Univ. Complutense de Madrid, Spain, 2001.
(http://dalila.sip.ucm.es/miembros/clara/publications.html).

6. R. Pena and C. Segura. Correctness of Non-determinism Analyses in a Parallel-
Functional Language. Technical Report 131-03, Univ. Complutense de Madrid,
Spain, 2003. (http://dalila.sip.ucm.es/miembros/clara/publications.html).

7. R. Penia and C. Segura. Non-Determinism Analysis in a Parallel-Functional Lan-
guage. In IFL’00, volume 2011 of LNCS, pages 1-18. Springer-Verlag, 2001.

Correctness of Non-determinism Analyses in a Parallel-Functional Language 85

8.

9.

10.

11.

12.

R. Pena and C. Segura. A Polynomial Cost Non-Determinism Analysis. In IFL’01,
volume 2312 of LNCS, pages 121-137. Springer-Verlag, 2002.

S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler.
The Glasgow Haskell Compiler: A Technical Overview. In Joint Framework for
Inf. Technology, Keele, DTI/SERC, pages 249-257, 1993.

S. L. Peyton Jones and A. L. M. Santos. A Transformation-based Optimiser for
Haskell. Science of Computer Programming 32(1-3):3-47, September 1998.

H. Sgndergaard and P. Sestoft. Referential Transparency, Definiteness and Unfold-
ability. Acta Informatica, 27(6):505-517, May 1990.

H. Sgndergaard and P. Sestoft. Non-Determinism in Functional Languages. Com-
puter Journal, 35(5):514-523, October 1992.

Inferring Cost Equations
for Recursive, Polymorphic
and Higher-Order Functional Programs

Pedro B. Vasconcelos* and Kevin Hammond

School of Computer Science, University of St Andrews, St Andrews, KY16 9SS, UK
Tel.: +44 (0)1334 463253, Fax: +44 (0)1334 463278
{pv,kh}@dcs.st-and.ac.uk

Abstract. This paper presents a type-based analysis for inferring size-
and cost-equations for recursive, higher-order and polymorphic func-
tional programs without requiring user annotations or unusual syntax.
Our type reconstruction algorithm is capable of inferring first-order cost
equations for a non-trivial subset of higher-order, recursive and poly-
morphic functions. We illustrate the approach with reference to some
standard examples of recursive programs.

1 Introduction

Obtaining good-quality information concerning runtime costs (whether space or
time) is important to many systems engineering activities, including compiler or
database optimization, parallel computing, and real-time systems. Many of these
activities require predictive information, acquired automatically at compile-time.
Although there has been some success in predicting costs for applicative lan-
guages in restricted settings [17,14,13,2], the problem of automatically ana-
lyzing costs of languages with recursion, higher-order functions and parametric
polymorphism remains an open one. These properties are key characteristics
of recent statically typed functional language designs such as Standard ML or
Haskell.

This paper presents a type-based analysis to automatically infer upper bound
evaluation costs for a simple, but representative, functional language with para-
metric polymorphism, higher-order functions and recursion. OQur aim is to pro-
duce a practical analysis that can deal with these essential languages features
without resorting to artificially restrictive syntactic forms. We use a type and
effect system [11] approach in which a standard Hindley-Milner type system [10]
and the associated Damas-Milner inference algorithm [4] are extended by “ef-
fects” describing evaluation cost. Our analysis derives first-order cost equations
with finite solutions for a non-trivial subset of higher-order, polymorphic and
recursive functions. It is fully automatic in producing cost equations without
requiring any user intervention, even in the form of type annotations. However,
obtaining closed-form solutions to these equations currently requires the use of
an external solver.

* On leave from DCC-FC & LIACC, University of Porto, Portugal.

P. Trinder, G. Michaelson, and R. Penia (Eds.): IFL 2003, LNCS 3145, pp. 86-101, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Inferring Cost Equations for Recursive Functional Programs 87

2 Language Notation and Cost Semantics

L is a very simple functional language, intended solely as a vehicle to explore
static analysis for cost determination. £ is strict, polymorphic, and higher-order,
with lists as its only compound data type. The terms e of £ are defined by the
following grammar, where x, n, b and p are the syntactic categories for variables,
natural numbers, booleans and primitive operations, respectively.

ex=z|n|bl|[]|ee]|ple)| A\x.e|fixz.e| e e

| if e; then es else e3 | let © = eq in ey

L has a conventional structure. The term Az.e is a function abstraction, while
fix z.e is a recursive function satisfying the equation z = e (i.e. a least fixed
point under a suitable domain). Let-bindings introduce polymorphic local vari-
able definitions as in the standard Hindley-Milner system [10]. Constructors and
primitive operations (arithmetic on naturals and lists projections) are restricted
to the correct number of arguments; partial applications can be obtained for
these forms, if required, using A-abstractions. To simplify our presentation (and
without loss of generality), we consider here only unary primitives. The terms
‘Az.e’, fix z.e’ and ‘let x = €’ in e’ bind the variable z in the sub-term e. We
follow the usual definitions of free variables and closed terms.

2.1 A Cost Model for £

We consider a call-by-value reduction semantics for £ (a formal presentation
of this semantics can be found elsewhere [16]). Rather than assigning distinct
costs to primitive operations, conditionals, etc. we will define the cost of an
L-expression solely in terms of the number of S-reduction steps, (Ax.e) ¢ —g
ele’/x] and assign zero cost other reduction rules for primitives, constructors,
etc. This cost metric has the advantages of being both easily understood and of
capturing the asymptotic costs for recursive definitions. Our effect system could
easily be extended to alternative metrics if required. Runtime errors have been
modeled by the absence of a reduction, e.g. head([]) #, and so have zero cost. In
our model, divergent reductions thus have infinite cost, whereas both confluent
and erroneous reduction sequences have finite cost.

3 A Type and Effect System for Sizes and Costs

This section presents the type and effect system that will form the basis for
our analysis. We have already proven that this type and effect system correctly
expresses upper bound cost information for recursive, higher-order and poly-
morphic programs [16]. This paper builds on that earlier work by developing the
corresponding type reconstruction (cost inference) algorithm.

88 Pedro B. Vasconcelos and Kevin Hammond

z2+e=€e+z=c¢€ ZXeE=€eXz=c¢€
ntw=w+n=w nXw=wxn=w,ifn>0
€E—N=c¢€ OXw=wx0=0
w—n=—w EXW =WXE=¢€

ni—nz =€, if no > ny

Fig. 1. Extending arithmetic to N.

3.1 Cost Expressions

We represent both sizes of data types and costs for reductions uniformly using
terms from a cost algebra. The basic values for this algebra are elements of the
set N = NU{¢,w}. Natural numbers represent finite sizes and costs, € represents
the undefined value and w represents the unbounded value. The usual ordering
< on naturals extends to N by setting z < w and e < z for all z € N, i.e. € and
w are, respectively, the bottom and top elements of (N, <). Let ¢ € ZVar be
the syntactical category of effect variables and { fo, f1,...} be a countable set of
function names (used to construct recurrence equations for recursive definitions
— Section 4.4). The set ZExp of cost expressions is generated by the grammar:

zu=Ll|n|e|lw|zi+z|z—n| 21Xz | max(zy, 22) | fi(2) .

Note that we only allow subtraction of constant values; this suffices for our
development and ensures that cost expressions are monotone, i.e. costs can only
increase when any variable increases. This property is desirable for obtaining an
inference algorithm for our type system (Section 4.5). We write cost expressions
following the usual associativity and precedence rules for +, — and x.

3.2 Semantics for Cost Expressions

A waluation p is a total mapping from effect variables to cost values p : ZVar —
N. Given a valuation p, the semantics of a cost expression is defined by the eval-
uation function [-]p : ZExp — N. Evaluation is defined by extending arithmetic
from N to N (cf. Figure 1). This evaluation semantics allows us to define exten-
sional equality on cost expressions: z = 2’ iff [z]p = [#']p for all valuations p.
Similarly, we lift the ordering < from N to a (partial) order on cost expressions.

3.3 Sized Types

Our effect system uses sized types [6], a small extension to standard Hindley-
Milner polymorphic types: each type, other than function and boolean types,
carries a superscript specifying an upper bound for its size. For function types,
a latent cost [13] is attached to the function arrow. This latent cost is an upper
bound on the cost of evaluating the function body.

Let « be the syntactical category for type variables T'Var; the sized types T
are defined inductively by the following grammar:

7 == a | Bool | Nat® | List’t | 7 >7y.

Inferring Cost Equations for Recursive Functional Programs 89

Sized types allow us to describe the sizes of the elements of a structure as well
as the structure itself, e.g.: List (Natlo) denotes a list whose length is at most 5
with natural numbers no larger than 10 as elements.

In order to represent polymorphic types we allow universal quantification
over type or effect variables, yielding a sized type scheme as in [13]. We will
write type schemes with a single outermost quantifier and a sequence of vari-
ables, i.e. Vv.7 = V7;....Vy,.7, where v, € TVar U ZVar are type or effect
variables. Polymorphism allows size dependencies to be expressed for function
types; for example, the type scheme for a function to double its argument (a

natural number) might be ¥n.Nat" 2 Nat?*™ | where we assume zero cost for the
operation. The variables 1, ...,~, are bound in the type scheme Vv; ...7v,.7. A
variable that is not bound is said to be free.

We use a number of standard notational conventions: given a sized type 7,
we denote the sequences of type and effect variables occurring in 7 by TV (7) and
ZV (1), respectively. We use + for sequence concatenation; when the ordering
among elements is not relevant, we treat sequences as sets and combine them
using set operations U, N, \. Finally, we use 6 for substitutions from type variables
to sized types and ¢ for substitutions from effect variables to cost expressions.

3.4 Type and Effect System

Figure 2 presents type system rules for core £ expressions. The system derives
judgements of the form I' F e : ¢ & z which can be informally read as “under
type assumptions I', expression e admits type scheme ¢ and z is an upper bound
for the cost of €”. A type environment I is a sequence of assumptions [z : o]

[varst] [nats] [bools]
I'taz:I'(z)&0 I'n:Nat" &0 I'+b:Bool & 0
INz:mlkFe:m&z Nter:mBrn&z I'Fe:m &2z

z [abSSt] [appst]
I'FXze:m1=>7m &0 I'teiex:m & 1421+22+23
I'key:Bool&z I'te1:7& 2 F"BQZT&Z/[_{:}
ITst
I'Fif eg theneq else es : 7 & 2+2'
I'z:VerlkFe:7&0 {Z}ﬂFV(F)Z@f_ |
IXst
I'Hfixxe:7&0
'teitor &z Ir:olber:mn &z 're:t&z 747 2<7
Ietst] [Weakst]
I'Fletx=ejines: 1 & 21422 I'bFe:7r & 7%
I'kFe:t&2 {’y}ﬂFV(F):(Z)[]FFe:V’y.T&z dom(@)udom(qﬁ)g{’y}[_ |
gen, insst
I'te:Vy1 &2 ' I'te:¢(071) & 2

Fig. 2. Typing Rules for the Core £ Expressions.

90 Pedro B. Vasconcelos and Kevin Hammond

r=r1 ndrn mndn ndr mdn 2 <z
, [reflex<] [trans<] , [absq]
74T 71 473 T{i>7_2l§]7_137—2
z1 < 22 21<2z2 172
[nat<] [list<]
Nat*' < Nat*? - List** 7 < List™ 1o -

Fig. 3. Subtyping Relation.

mapping L variables to type schemes. An environment can be seen as a partial
finite mapping by defining I'(x) = o if the rightmost occurrence of [z : ---]
in I' is [x : o]. The set of all free type and effect variables in I is represented
by FV(I"). With the exception of the [weaks:] and [fixs:] rules, this represents a
straightforward extension of the standard Hindley-Milner rules. Note that:

— The [weaks;] rule allows weakening, i.e. relaxing the upper bounds on sizes
or cost. It uses a subtyping relation < (Figure 3), which is structural, i.e. if
7 < 7/ then 7 and 7’ have the same type constructor.

— In the [absg] rule, the latent cost for the arrow type is the cost of evaluating
the body of the abstraction, while the cost for the actual abstraction is zero;
this is because our reduction semantics evaluates only to weak normal forms.

— The [app,,] rule adds the latent cost of the function to the costs of obtaining
both function and argument, plus one to count for the S-reduction (this is
the only rule where a positive cost is added).

— The [ifs] rule requires that both branches admit the same type and cost,
which may necessitate weakening judgements for one or both branches.

— The [letst] rule implements polymorphism by allowing a quantified type for
the locally defined variable; let is not costed as a (-reduction.

— The [inss:] and [geng,] rules are straightforward extensions of the Hindley-
Milner forms to allow for polymorphism on both type variables and effect
variables. Note that unlike [6], our system does not require a side-condition
for w-instantiation in the [insg] rule!.

— The [fixs] rule allows the body of the recursive function to be typed using
polymorphic recursion restricted to size and cost variables. The idea is to
allow capturing the recursive uses of the function through instantiation.

Unlike elementary strong functional programming [15] and the sized type
system of [6], our system does not reject divergent computations. For example,
the term

loop = fix fx.fx
admits the type judgement - loop : Yaf.ao = 3 & 0. As a consequence, all
types are inhabited (for example, by the term ‘loop true’). Note that the non-
termination is still captured by the latent cost w in our sized type for loop. The

1 Although we have not yet constructed a formal semantics for our sized types, we
conjecture that this is because, unlike Hughes, Pareto and Sabry [6], our intended
semantics for sized types includes divergent values.

Inferring Cost Equations for Recursive Functional Programs 91

reciprocal, however, is not true — i.e. there exist terminating terms that admit
only an w cost:
M = if false then loop true else false .

Clearly M is terminating but all type judgements - M : Bool & z must derive an
unbounded cost z = w because of the application of loop in one of the branches
of the conditional.

In general, our system can only assign finite costs to recursions when the size
of some component of an argument decreases strictly in each iteration (i.e. when
a single argument-derived size induces a well-founded ordering). It follows that
we can infer cost equations with finite solutions for many primitive recursive
definitions (subject to the limitations of expressibility in the cost algebra), plus
some more general forms as shown in Section 5.

4 Inference Algorithm

This section describes a type reconstruction algorithm for our system that is an
extension of Damas-Milner algorithm W [4]. The algorithm takes an unannotated
L expression and yields a sized type and a cost effect, together with a set of
constraints and recurrence equations.

4.1 Flat Sized Types and Constraints

As is done in other analysis based on type and effect inference (e.g. [1]), we
restrict annotations in the types to variables (yielding flat sized types) and sep-
arately collect effect constraints. This allows us to employ standard unification
to solve type equations and deal with the more complex cost algebra only in
the constraints. Our constraints express lower bounds for the effect variables (as
in [13]) and recurrence equations collected from recursive definitions (discussed
in Section 4.4):

2z | fill) == (1)

4.2 Flat Sized Type Schemes

In order to represent polymorphic types, our flat sized type schemes Vvy.(r, C)
quantify over both a flat type and a constraint set. The constraint set C' is chosen

to capture the subtyping relation allowed by the weakening rule. For example,

m+1

the type scheme Vm.Nat™ L Nat can be translated to the flat form,

Vm,n, k.(Nat™ B Nat™, {n >m+1, k> 1}).

Because of the restriction to the form of constraints, we cannot represent sized
types expressing functions with partial domains. For example, Nat!® = Bool

92 Pedro B. Vasconcelos and Kevin Hammond

should be translated to (Nat” % Bool, {n < 10, k > z}) but the constraint
n < 10 is not in the form of equation (1).

However, allowing type assumptions with partial domain such as f : Nat'® 2
Bool would cause us to reject an application like f 11 that is typeable in the
underlying Hindley-Milner system. By restricting the constraints to the form of
equation (1) and cost expressions to be monotone (cf. Section 3.2), we guarantee
not to reject terms that admit a Hindley-Milner type.

4.3 Type Reconstruction Rules

The type reconstruction algorithm is presented in Figure 4, in the same inference-
rule style used for the type system (cf. Figure 2). The reconstruction rules,
however, are structural, i.e. exactly one rule applies for each £ syntax form. In
particular, we no longer have separate rules for generalization and instantiation
of polymorphic types and weakening (i.e. relaxation of sizes or costs). Instead,
generalization and instantiation are applied at let-bindings and at the use of
identifiers, respectively (as in Damas-Milner algorithm W). Weakening is applied
in two distinct situations:

1. in conditionals, to obtain a super-type of the types of both branches [6] and
an upper bound on the costs of the branches; and

2. in function applications, to construct a correct sub-typing relation between
the type of a concrete argument to a function and the function’s domain.

Type reconstruction yields judgements of the form I' - e : (1,0, z, C), where
the inputs are a list of well-formed assumptions I" and an £ expression e, and
the output is the tuple (7,0, z, C') consisting of a flat sized type 7, a unifying
substitution 6, a cost expression z and a constraint set C.

Our algorithm separates the inference of the type structure from the inference
of the effects. Note that:

— The unification algorithm of Figure 5 is used to solve equations on flat sized
types: it yields a substitution making two types equal up to annotations
and uses an auxiliary freshening function v to avoid unwanted capturing of
variables.

— The domain matching function of Figure 5 yields a set of constraints impos-
ing a sub-typing relation between two Hindley-Milner identical types (this
is possible because our sub-typing relation is structural).

— The [nat,,] rule captures the size of the natural as a constraint, illustrating
that the algorithm manipulates only flat sized types.

— The [app,,] rule uses domain matching to impose a sub-typing relation be-
tween the argument type and the function’s domain type.

— The [if,q] rule uses unification to obtain the type structure, and domain
matching to constrain the result to be a super-type of the types of the
branches.

— The [let,,] rule generalizes not only over free type- and effect-variables in the
type, but also over variables in the constraint set to ensure proper capture
of dependencies in constraint chains.

Inferring Cost Equations for Recursive Functional Programs 93

b (BooL[],O,@)[bOOha] IFn:(Nat’,[],0,{f > n}>[natra] fresh ¢

0 =la/el o=16/4 [var,,] fresh o', ¢
Iz :Val.(1,C)| F x: (067,0,0,6C)
I'z: (o,0)] Fe:(r,0,2 C)

, [abs;q] fresh a,f
I'-Xz.e: (la—T1,0,0,{>2}UC)

I'tey:{m,01,21, Ch) 011 & ez : (12,02, 22, Ca)
03 =U(0271,250) O3 = D(030271,05(r2 > 1))
I'Fepes: <03057 0302917 1+442 +z2, 01U02U03>

fresh a,f
[app,.,]

I+ €1 <7‘1,91,Zl, Cl> 91F [€2 : <7‘2,92722, Cz) 9291F [€3 : <7‘3,93723, C3>
94 :L{(93027—17Boo|) 95 :L{(94037-27947-3)
7 = v(05040271) C = C1UCoU C3UD(05040372,7) U D(050473,T)

[ifra]
I' b if e1 then ez else e3 : (T,05040302601, 21 +max(z2, z3), C)
I'Fei: <7‘1,91,Zl, Cl> {’7} = (TV(Tl) U ZV(Tl) @] ZV(C1)) \ FV(91F)
91F[£C : V"Y.(Th 01)] I €2 <7’27027227 02> [Iet]
I'klet z =e1 in e2: (12,0201, 21+ 22, C1UCh) "
Iz: (a,0)]Fe:(m,01,...,...)
01 =U(Or10, 1) T =016 ' =v(7)
X = FZV(9/191F) {Z} = ZV(T’) \ X fresh o
Cl :L(T7X71) C,ZC(TI7X7 1) fresh fl,fz,...,fn,
0161z :Ve.(7', C) Fe: (12,00,...,Ca) where n = |C1] = |C'] = ||
& IR(T27X71)

[fixra]
I'Hfix z.e: <027’7 929,101707 CiuUCU 5>

Fig. 4. Type Reconstruction Rules for the Core £ Expressions.

4.4 Inference for Recursive Definitions
We describe in detail the inference rule for recursive definitions ‘fix x.e’:

— We first infer a type for the function body e under a generic assumption «
for the recursive function x. By unifying the result type with the assumed
variable «, we obtain the Hindley-Milner type structure 7 for the function.
The cost and constraints obtained from this step are discarded.

— Next we use an auxiliary recurrence labelling function £ (Figure 6) to tra-
verse the type and yield a skeleton of the cost and size effects dependencies,
i.e. a set of constraints relating the type annotations to fresh cost function
symbols fi1,..., fn. As we want to infer functional dependencies for sizes and

94 Pedro B. Vasconcelos and Kevin Hammond

U:17x1—0 vViT—=T
Ula,) = [a'/a] v(a) =a
Ula,) =U(T,0) = [v(7)/0l, v(Bool) = Bool

if a does not occur in 7 v(Natt) = Natf/7 fresh ¢’
UEBOOz! BOO'%) = H v(List‘r) = List" v(r), fresh ¢’
U(Nat™, Nat™ = o /
U(Llst 1, List®212) = U(11, 72) v(n —>7'2) =v(n)=v(r), fresht
U —>7'2,7-1 e—>72) =U(0172,0175)01

where 61 = U(T1,7])
otherwise, unification fails

D:7x17—C

D(a, @) =0
D(Bool Bool) =0
D(Nat’t,Nat?) = {t > 41}
D(List* 1y, List®212) = {fa > £1} UD(11,72)
D(nLoma,ri Sorh) = {¢ 2 0} UD(r{, 1) UD(ms,73)

Fig. 5. Unification, Annotation Freshening & Domain Matching Functions.

L:T7xlxn—C R :7x€xn—E&
L(a,x,1) =0 R, x,1) =0
L(Bool,z,i) =10 R(Bool,z,i) =10
L(Nat’,z,i) ={¢> fi(z)} R(Nat’,z,i) = {fi(z)=1(}
L(List’r, z,i) = R(List‘r, xz,i) =
(0= fi(®)} U L(T,2,i+ 1) {filx) = UR(T,@,i+1)
,C,(TLTI,QS,Z') = R(Tim' T, 1) =
{£> filz" yuL(r,z',i+1) {fi(z") = UR(x',i+1)
where ' = x +7ZV(1) where ' = x +7ZV(1)

Fig. 6. Recurrence Labelling and Collection.

costs, whenever we encounter a type 7 — 7’ we make the annotations in 7
parameters of the cost functions synthesized for 7/ and the latent cost z.

— Finally, we infer a type for the body e again, this time with a polymorphic
assumption quantifying over all free annotations in the type. This yields a
flat type 72 and set of constraints Cs capturing a single-step unfolding of the
recursive function. The auxiliary function R of Figure 6 collects the relations
on costs and sizes for this unfolding as a set of recurrence equations involving
the cost functions fi,..., fu.

In order to make the presentation self-contained, we use the type inference
algorithm twice for the body of the recursive function: firstly to obtain the
type structure and secondly to obtain the recurrence relations. We could, how-
ever, avoid this extra work by requiring Hindley-Milner type signatures for fix-

Inferring Cost Equations for Recursive Functional Programs 95

point terms (this information might be available, for example, from compile-time
type-inference prior to the analysis). Alternatively, we could employ a standard
Hindley-Milner type inference (rather than our sized-type inference) and avoid
unnecessary constraint bookkeeping.

4.5 Solving the Constraint Sets

We now address the issue of solving the effect constraints collected during type
inference; the recurrence equations are left unsolved. (see Section 7 for a discus-
sion on recurrence solving techniques). Our algorithm is presented in Figure 7
and is based on that of Reistad and Gifford [13] and on the worklist iteration
algorithms for solving dataflow analysis constraints (e.g. [11]).

Initial variable assignment: p(¢) := ¢, V/.
Iterate over strongly connected components in topological ordering.
For each SCC C = {(¢; > zi)i—1 }:
For j=1,2...noruntil p = C:
Fori=1,2...n:
set p(¢s) := max(p(t:), [2i]p)
If p £ C, then for i = 1,2...n: set p(¢;) == w

Fig. 7. Constraint Solving Algorithm.

We say that an assignment p validates a constraint set C' (and write p = C)
iff p(€) > [z]p for all (¢ > z) € C. Clearly p({) = w, V¢ is always a solution, but
we are interested in obtaining the minimal solution. Because our cost algebra
is monotone, this solution can be computed as a least fixpoint of the associated
equations [13]. This fixpoint could be reached by assigning € to all variables
and iterating through the constraints, updating variable values.? However, this
procedure will not terminate if the least solution of a variable is w.

To circumvent this problem, we first decompose the constraint set into
strongly connected components according to constraint dependencies and solve
each component separately. For an SCC with n constraints, a finite solution
to the variables (if it exists) must be reached within n iterations (because the
largest cyclic dependency will involve at most n constraints). If after n iterations
we fail to obtain a solution, then the least solution must be w.

The algorithm is complete with complexity which is quadratic on the size
of the largest SCC. We believe this size will remain small and bounded with
larger program sizes. The complexity could be further reduced (at the expense
of losing completeness) by limiting the outer j-loop to a fixed limit. We have

2 The monotonicity of cost expressions allows variable assignment to be extended
incrementally, since if p = C then p’ |= C for any p’ > p.

96 Pedro B. Vasconcelos and Kevin Hammond

implemented a modified version of this algorithm that computes symbolic solu-
tions by starting with an initial assignment where relevant variables are bound
to symbolic parameters, and subsequently using symbolic evaluation for costs.

5 Examples from Our Prototype Implementation

We have implemented our type reconstruction algorithm and successfully used
it to derive good cost information for a variety of sample programs, including
simple numeric recursive functions (e.g. factorial, naive Fibonacci and power)
and a representative subset of the Haskell standard Prelude list functions (e.g.
length, append, map, iterate, filter, foldl/r, reverse, drop, take, zipWith and
an insertion sort algorithm). The prototype implementation has proved to be
acceptably efficient in all the examples we have tested. A web implementa-
tion of the algorithm, together with several of these examples, is available at
http://wuw.dcs.st-and.ac.uk/"pv/cost.html. We present three examples
chosen to illustrate the inference process for recursion in the presence of higher-
order functions and polymorphism, and to be representative of the scope of our
analysis.

5.1 A Worked Example: Map

Our first example is a worked type reconstruction for map, the standard higher-
order function that applies an argument function to each element in a list:

map = \f.fix map’ Azs.if null(zs) then [] else f head(xs)::map’ tail(xs)

This example illustrates how the sized type inference captures the dependency
on the argument function cost and how recurrence equations are obtained. We
present only the major inference steps for map, omitting intermediate results.

1. Infer function body type under generic assumption
I =1f:(a1,0)]
Ilmap’ : (a2, 0)] F Azs.if null(zs) then [] else ...: {71,01,...,...),
T = List’s Qs L, List€7o¢4
01 = [043 é>Oé4/041, Listbag ﬁ Listl4a4/ag]
2. Unify to get the type structure
1 =U(T,0100) =]
T= Listbag& List“ cug
7 = v(r) = List® a3 2 List"* a4
3. Collect free effect variables in environment
X =FZV(016.1) = {¢1}
4. Recurrence labelling
Cr=L(r,{t1},1) ={ls > f1(l1,62), L4 = fo(lr, €2)}
C' = {ly > f1(l1,0s), lro > fa(l1,ls)}

Inferring Cost Equations for Recursive Functional Programs 97

5. Second inference under polymorphic assumption

' =1f: (a3 2, 0)]

I[map’ : Vlglolr.(7', C')] b Axs.if null(zs) then [J else ...: (1a,...,..., Ca)
T = Listé“ozg,E—I% List€13a4

Oy = {l12 > max(2 + {1 + f1(€1,£11—1),0), 13 > max(1 + fo(¢1, 611 —1),0)}
6. Recurrence collection
E=TR(m, {€:1},1) = {fi(l1,€11) = max(2 + {1 + f1({1,411—1),0),
f2(l1,011) = max(1 + f2(¢1,¢11—1),0)}

Note that to make the inference process easier to understand, we have presented
the constraint set Cs after symbolic simplification, and substituted the solutions
in the right-hand sides of the recurrence equations in £. Both these steps are
done automatically by our implementation of the algorithm.

The result of type inference for map is then:

map : (04320[4)23 LiStézagﬁLiSt&O@, {612 Z O, 63 Z fl (gl,éz), 64 Z f2(€1,€2)}

where the recurrence functions f; and fo express the cost for the map and the
size of the result list, respectively.

The upper-bound for costs of the base and recursive cases are represented by
a single equation in the recurrences: for the empty list, we have £1; = 0 and the
base cost is f1(¢1,0) = max(2 + ¢ + f1(f1,€),0) = max(e,0) = 0. Note that e
represents the undefined cost corresponding to an erroneous computation path
(in this example, taking the tail of an empty list).

We can obtain closed-form solutions to the recurrences either by inspection or
using computer algebra software: f1(€1,411) = (24+¥¢1) x£11 and f2(¢1,411) = 411,
i.e. map maintains the list size and its cost is proportional to the list size and
function latent cost. Note that these are the best estimates expressible in our
cost algebra.

5.2 List Reverse

The next example illustrates analysis for a two-parameter recursion (list reversal)
using an accumulating parameter:

rev = fix rev’ Az \y.if null(z) then y else rev’ tail(z) (head(z)::y)
We obtain the following sized type and constraints solution:
Trey = List"a % List™a 2 List* o
b= fl(n)a by = f2(n7m)7 k= f3(n7m)

fl(n) =0
fa(n,m) = max(2 + f1(n—1) + fa(n—1,14m),0)
f3(n,m) = max(fs(n—1,14+m), m)

Simplifying the recurrence equations yields the exact cost and size,

fa(n,m) =2xn, fs(n,m)=n+m

98 Pedro B. Vasconcelos and Kevin Hammond

i.e. the result size is the sum of the two lists sizes and the cost is proportional
to the size of the of the first argument. Note that type inference automatically
handles the two-parameter recursion. There is no need for the programmer to
indicate which parameter is reducing in size or to rewrite the program into an
explicitly primitive recursive form.

5.3 List Union

Our final example is a function that constructs the set union of two lists. We
first define a higher-order function any that tests a predicate for some element
of a list. Using any, we define union for a generic equality function eq given as a
higher-order parameter. This example generalizes the first-order case presented
by both Wegbreit [17] and Rosendahl [14].

let any = Ap. fix any’ . Axs. if null(xs) then false
else if p head(zs) then true else any’ tail(xs)

let union = Aeq.Axs. fix union’ Ays. if null(ys) then xs
else if any (eq head(ys)) xs then union’ tail(ys)
else head(ys)::union’ tail(ys)

The types inferred from the definitions above, after substitution of the con-
straint solutions, are:

Tany = (a5 Bool) 2 List"a 22 Bool
3 4y 0,.-..n O ,..m ¥£5,.
Tunion = (@—=a=Bool) = List"a — List™ a =3 List’ «
where 62 = f1(£17k); €5 = f2(€3,€4,n,m), p= f3(€3,€4,n,m)
f1(£17k) = max(l + él + max(l + fl(gla k—l),O),O)
f2(ls,€4,n,m) = max(4 + €5 + f1(ly,n) + f2(l3, L4, n,m—1),0)
f3(ls,€q,n,m) = max(1 + f3(s,ly,n,m—1),n)

and the recurrences admit the following solutions:

filly, k) = (24 £6) x k
folls, €a,n,m) = (4 + L3+ (24 £4) x n) x m
f3(lz,l4,n,m) =n+m

Observe that the costs and sizes are widened to the worst-case when there
are no common elements in the two lists: any traverses the complete list and the
size the of union is the sum of the sizes of the two lists.

Because of the partial application of equality, the cost inferred for union
depends on the two latent costs of the equality function: /3 is added m times
(one for each invocation of union’), whereas ¢4 is added n x m times (one for each
invocation of any’). The particular case where equality is a primitive corresponds
to setting ¢35 = ¢4 = 0 and the cost for union is then (4 + 2 x n) x m, which is
asymptotically identical to the non-generic solution presented in [14]. It follows
that our analysis can still obtain good bounds for first-order instances even when
deriving costs from a higher-order definition.

Inferring Cost Equations for Recursive Functional Programs 99

6 Related Work

To the best of our knowledge, there is no comparable analysis capable of auto-
matically inferring costs for recursive, higher-order and polymorphic functional
programs. Previous approaches have, however, considered aspects of this prob-
lem. The approach described here extends our own earlier work on inference for
sized time systems [9, 12] by covering recursive as well as non-recursive language
forms. Our sized type system is directly influenced by that of Hughes, Pareto
and Sabry [6], who have developed a type checking algorithm for sized types in
a higher-order, recursive, and non-strict functional language. While the system
of Hughes at al., can be used to prove termination for recursion and productivity
for streams, it does not consider execution costs and does not infer sizes. Chin
and Khoo [3] have extended this work to yield an inference algorithm for such
sized types. Their system does not, however, infer costs and deals only with
monomorphic definitions and limited forms of higher-order functions. Finally,
Chin and Khoo’s use of a Presburger arithmetic solver limits the expressiveness
of sizes to affine functions over size variables, whereas our system allows for
general monotone functions, including polynomials.

Most closely related to our analysis is the system by Reistad and Gifford [13]
for the cost analysis of Lisp expressions. This system handles higher-order func-
tions through “latent costs” as we have done here, and is partially based on the
“time system” by Dornic et al. [5], Rather than trying to infer costs for user-
defined recursive functions, however, Reistad and Gifford require the use of fixed
higher-order skeletons with known latent costs.

Pioneering work on automatic complexity analysis was undertaken by Weg-
breit [17]. Wegbreit’s METRIC system derived probabilistic complexity measures
of a limited range of first-order Lisp programs by solving the difference equa-
tions that occur as an intermediate step in the complexity analysis. The analysis,
however, is not guaranteed to be sound as the system assumes statistical inde-
pendence of tests in conditionals. Consequently, the programmer must confirm
the validity of the analysis against the semantics of the program.

Le Métayer [7] uses program transformation via a set of rewrite rules to derive
complexity functions for FP programs. A database of known recurrences is used
to produce closed forms for some recursive functions. However, like Reistad and
Gifford’s approach, recursive definitions must be given in terms of a particular
set of skeletons. Moreover, the analysis is not modular as the transformation
can only be applied to a complete programs. Rosendahl [14] also uses program
transformation; in this case to obtain a step counting version of first-order Lisp
programs. This is followed by abstract interpretation to obtain a program giv-
ing an upper bound on the cost. Again this abstract interpretation requires a
complete program, limiting both its scalability and its applicability to systems
with e.g. compiled libraries. Finally, Benzinger [2] obtains worst-case complex-
ity analysis for NuPrl-synthesized programs by “symbolic execution” followed
by recurrence solving. The system supports first-order functions and lazy lists
but requires higher-order functions to be annotated with complexity informa-
tion. Moreover, only a restricted primitive recursion syntax is supported. These

100 Pedro B. Vasconcelos and Kevin Hammond

limitations are justified by Benzinger’s objective, which is to aid resource analy-
sis for automatically synthesized programs, rather than to analyze hand-written
functions, as in our case.

7 Conclusions and Further Work

The main contribution of this paper is a type reconstruction algorithm to es-
timate sizes and costs for a simple functional language with recursive, higher-
order and polymorphic functions Our algorithm is an extension of the standard
Hindley-Milner type inference and as such we achieve full modularity of the anal-
ysis. The results obtained for recursion by our analysis are determined solely by
the deconstruction of inductive types (i.e. naturals or lists) and not by any con-
ditionals in the source program. Although this might lead to over-estimation of
costs in some cases, it has the advantage of placing no syntactical restrictions
on the forms of recursion we can analyze.

We have found that our approach produces accurate cost equations for a
representative subset of the Haskell standard Prelude functions, suggesting it
should yield useful information in a more practical setting. Although we have
not yet analyzed the complexity of the inference algorithm, our experience with
the prototype implementations suggests that its execution time is comparable
to ordinary type inference.

A number of issues remain to be studied. Firstly, we need to extend our notion
of sized types and inference to handle full integer arithmetic and a richer set of
data-types including user-defined recursive structures. This will ultimately allow
us to address real languages such as our resource-bounded language Hume. Sec-
ondly, since this is not the primary focus of our research, we have not addressed
the problem of automatically obtaining closed forms for the recurrence equa-
tions; for some subclasses of these equations there are mechanical methods that
yield closed forms [8]. All general-purpose computer algebra systems (e.g. Maple,
Mathematica and MuPAD) provide some functionally to solve these equations.
The new Mathematica Version 5 is also able to solve recurrence equations in
multiple variables. All recurrences obtained for the examples in Section 5 can
be solved by Mathematica 5 with only slight human intervention to eliminate the
max terms. We intend to automate this step in due course. Thirdly, although
we conjecture that a notion of principal type should hold for our system, we
have not yet addressed this issue. Since our analysis will derive an upper bound
sized type, but not necessarily the least one, this is, of course, purely a quality
rather than soundness issue. Finally, we have not yet constructed soundness or
completeness proofs relating our inference algorithm to the type system. We be-
lieve, however, that these should be analogous to proofs for other type and effect
systems [1].

We are grateful to Alvaro J. Rebén Portillo, Clara Segura Diaz, Roy Dy-
ckhoff, Hans-Wolfgang Loidl, Greg Michaelson and the anonymous referees for

3 In practice, the authors have encountered simple recurrences for which Mathematica
yields a wrong solution — a bug that has been reported to the software publisher!

Inferring Cost Equations for Recursive Functional Programs 101

their helpful comments on earlier drafts of this paper. This work is generously
sponsored by EPSRC grant GR/R 70545/01.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

T. Amtoft, F. Nielson, and H.R. Nielson. Type and Effect Systems: Behaviours for
Concurrency. Imperial College Press, 1999.

R. Benzinger. Automated Complexity Analysis of Nuprl Extracted Programs.
Journal of Functional Programming, 11(1):3-31, 2001.

W.-N. Chin and S.-C. Khoo. Calculating Sized Types. Higher-Order and Symbolic
Computing, 14(2,3), 2001.

L. Damas and A.J.R.G. Milner. Principal Type-Schemes for Functional Programs.
In Proc. 1982 ACM Symp. on Principles of Prog. Langs. — POPL ’82, pages 207—
212, 1982.

V. Dornic, P. Jouvelot, and D.K. Gifford. Polymorphic Time Systems for Estimat-
ing Program Complexity. ACM Letters on Prog. Lang. and Systems, 1(1):33-45,
March 1992.

R.J.M. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive
Systems using Sized Types. In Proc 1996 ACM Symposium on Principles of Pro-
gramming Languages — POPL ’96, St Petersburg, FL, January 1996.

D. Le Métayer. ACE: An Automatic Complexity Evaluator. ACM Transactions
on Programming Languages and Systems, 10(2), April 1988.

H. Levy and F. Lessman. Finite Difference Fquations. Macmillan, 1961.

H-W. Loidl and K. Hammond. A Sized Time System for a Parallel Functional
Language. In Glasgow Workshop on Functional Programming, Ullapool, July 1996.
A.J.R.G. Milner. A Theory of Type Polymorphism in Programming. J. Computer
System Sciences, 17(3):348-375, 1976.

F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag, 1999.

A. Rebén Portillo, K. Hammond, H.-W. Loidl, and P.B. Vasconcelos. Cost Analysis
using Automatic Size and Time Inference. In Proc. IFL 2002 — Implementation of
Functional Languages, Madrid, Spain, LNCS 2670. Springer-Verlag, 2003.

B. Reistad and D.K. Gifford. Static Dependent Costs for Estimating Execution
Time. In Proc. 1994 ACM Conference on Lisp and Functional Programming —
LFP 9, pages 65-78, Orlando, FL, June 1994.

M. Rosendahl. Automatic Complexity Analysis. In Proc. 1989 Intl. Conf. on
Functional Prog. Langs. and Comp. Arch. — FPCA ’89, pages 144-156, 1989.
D.A. Turner. Elementary Strong Functional Programming. In Proc. Symp. on
Funct. Prog. Langs. in Education — FPLE ’95, LNCS. Springer-Verlag, Dec. 1995.
P.B. Vasconcelos and K. Hammond. A Type and Effect System for Costing Recur-
sive, Higher-Order and Polymorphic Functional Programs. In preparation, 2004.
B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.

Dynamic Chunking in Eden

Jost Berthold

Philipps-Universitat Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Strafle, D-35032 Marburg, Germany
berthold@informatik.uni-marburg.de

Abstract. Parallel programming generally requires awareness of the
granularity and communication requirements of parallel subtasks, since
without precaution, the overhead for parameter and result communica-
tion may outweigh the gain of parallel processing. While this problem
is often solved explicitly at the language level, it can also be alleviated
by optimising message passing mechanisms in the runtime environment.
We describe how a simple buffering mechanism introduces dynamic list
chunking in the runtime environment of the parallel functional language
Eden. We discuss design and implementation aspects of dynamic chunk-
ing and compare its effects to the original version in a set of measure-
ments. Our optimisation is justified by a simple cost model, measure-
ments analyse the overhead and illustrate the impact of the changed
message passing mechanism.

1 Introduction

A major issue in parallel programming is to consider the granularity and com-
munication need of parallel algorithms [6]. Regardless of the underlying language
paradigm, communication latency in parallel algorithms may limit the achiev-
able speedup. On the other hand, sending more data at a time can spoil the
parallel system’s synchronisation and lead to distributed sequential execution.
In the field of lazy functional languages, a second obstacle is the conflict be-
tween demand-driven evaluation and parallelism [18]. Parallelism control in the
coordination language generally has to balance between lazy evaluation and fast
parallel startup.

The parallel functional language Eden [3] offers means to define parallel pro-
cesses and control their execution and granularity explicitly at the language
level. As investigated in [9], ingenious programming with respect to the partic-
ular language semantics of Eden coordination constructs leads to significantly
better speedup, but such optimisations force the programmer to write far from
obvious code and thus fail to meet the main intention of the functional paradigm
in parallel programming: “/to] eliminate [...] unpleasant burdens of parallel pro-
gramming...” ([8], foreword) by high abstraction. Benchmark programs often
use a chunking technique to increase the size of messages between two processes;
which we would like to call the message granularity, as opposed to the task
granularity, which refers to the complexity of processes (as a general term, gran-
ularity of computation units is reciprocal to their number). However, the data

P. Trinder, G. Michaelson, and R. Pena (Eds.): IFL 2003, LNCS 3145, pp. 102-117, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Dynamic Chunking in Eden 103

communication of a parallel program is strongly influenced by the particular
hardware and network setup. A common issue for benchmarking programs is to
first experiment with different granularities in order to balance communication
latency against synchronisation lacks, and then hand-tune the explicitly con-
trolled (message) granularity from the experimental pre-results. The hand-tuning
of programs involves severe program restructuring which decreases readability
and maintainability. Simple lists are e.g. replaced by lists of lists, which requires
complex and error-prone conversions. These problems could however be avoided
by optimising the message passing mechanism in the runtime environment.

Such an optimisation should be located at a very low level in the communica-
tion facilities of the runtime system, thereby making it completely independent
of the language semantics. The main idea in the optimisation is to save communi-
cation cost by automatically gathering successive messages to the same receiver.
Several messages will thus be dynamically chunked in one single big message; as
opposed to explicit static chunking of the data itself in the program’s granularity
control.

In this paper, we describe the implementation and the effects of this simple
buffering mechanism in the runtime environment of the parallel functional lan-
guage Eden. The paper is organised as follows: After a short introduction to the
language Eden and its implementation in Section 2, we describe the aim of the
optimisation as well as some design and implementation aspects in Section 3.
The effect of our optimisation is described by a simple cost model in Section 4.
Finally, we show measurements which analyse the overhead and the impact of
the changed message passing mechanism. Section 5 concludes.

2 Parallel Processing with Eden

2.1 Language Description

Eden extends Haskell [14] with syntactic constructs for explicitly defining pro-
cesses, providing direct control over process granularity, data distribution and
communication topology [3, 10]. Its two main coordination constructs are process
abstraction and instantiation.

process::(Trans a, Trans b)=> (a -> b) -> Process a b

embeds functions of type a->b into process abstractions of type Process a b where
the context (Trans a, Trans b) states that both types a and b belong to the
type class Trans of transmissible values. A process abstraction process (\x -> e)
defines the behavior of a process with parameter x as input and expression e as
output.

A process instantiation uses the predefined infix operator

(#)::(Trans a,Trans b)=> Process a b -> (a -> b)

to provide a process abstraction with actual input parameters. The evaluation
of an expression (process (\ x -> el)) # e2 leads to the dynamic creation of a

104 Jost Berthold

process together with its interconnecting communication channels. The instan-
tiating or parent process is responsible for evaluating and sending e2, while the
new child process evaluates the expression el[x->e2] and sends the result back
to the parent. The (denotational) meaning of the above expression is identical
to that of the ordinary function application ((\ x -> el) e2).

Both input and output of a process can be a tuple, in which case one con-
current thread for each output channel is created, so that different values can be
produced independently. Whenever one of their outputs is needed in the overall
evaluation, the whole process will be instantiated and will evaluate and send
all its outputs eagerly. This deviation from lazy evaluation aims at increasing
the parallelism degree and at speeding up the distribution of the computation.
Local garbage collection detects unnecessary results and stops the evaluating
remote threads. In general, Eden processes do not share data among each other
and are encapsulated units of computation. All data is communicated eagerly
via (internal) channels, avoiding global memory management and data request
messages, but possibly duplicating data.

2.2 Stream and List Processing

Data communicated between Eden processes is generally evaluated to normal
form by the sender. Lists are communicated as streams, i.e. each element is sent
immediately after its evaluation. This special communication property can be
utilised to profit from lazy evaluation, namely by using infinite structures and
by reusing the output recursively, as e.g. in the workpool skeleton [10]. Another
obvious effect is the increased responsiveness of remote processes and the inter-
leaving of parameter supply and parallel computation. Processing long lists of
data is a prime example for functional parallel programs, e.g. in a simple parallel
sorting program:

Example: The following function sorts a list of values in parallel by distributing
it to child processes, which sort the sublists using a sequential sorting algorithm.
Finally, the sorted sublists are merged together by the parent.

parsort :: (Trans a, Ord a) => ([a] -> [a]) -> [a] -> [a]
parsort _ [1 = []
parsort seqgsort xs = lmerge [(process segsort) # sublist |
sublist <- unshuffleN noPe xs] ‘using’ spine

The sublists are created by a split function unshuffleN :: Int -> [a]l -> [[al]
which uses the system value noPe to determine the number of available PEs
in the parallel setup. The function lmerge merges the returned sorted sublists
sequentially in a tree-shape manner. The evaluation strategy spine [16] is applied
in order to start all processes simultaneously as soon as the result is needed. <«

In the child processes, work is done essentially by comparing several inputs.
The Eden sending policy leads to a large number of very small messages be-
tween the parent and the sorting processes and slows them down (note that the
message passing latency also affects the evaluation in Eden, since values are sent

Dynamic Chunking in Eden 105

eagerly after evaluation, whereas with lazy communication and global memory,
data transmission does not affect the evaluation). If the program does not ex-
ploit stream communication, it is favourable to send more data together, ideally
without disturbing the interleaving between parameter supply and evaluation.

We could modify the parallel sorting function, so that the sorter processes
receive their input in bigger chunks instead of element per element:

Ezample:(cont.d)

parsortchunk :: (Trans a, Ord a) => Int -> ([a] -> [a]l) -> [a] -> [a]
parsortchunk size seqsort xs =

Ilmerge [process (segsort . concat) # (chunk size sublist) |

sublist <- unshuffleN noPE xs] ‘using’ spine

-- simple list chunking
chunk :: Int -> [al -> [[all
chunk _ [] = []
chunk k xs = (take k xs) : chunk k (drop k xs)

The chunking function aggregates every size elements to a sub-sublist, which is
deconstructed by the receiver, so we reduce the number of messages. But this
second version is much less intuitive, and it is far from obvious which parameter
for size would be best. Another, even more obscure variant restructures the
parallel sorting algorithm and chunks the output as well:

parsortchunk? size segsort xs =
lmerge [lmerge (process (map segsort) # (chunk size sublist) |
sublist <- unshuffleN noPE xs] ‘using’ spine

In this version, each child process sorts several smaller lists, and the caller merges
both each child’s results and the final result. This overhead for the caller is the
price for less communication and a much better overlap of parallel evaluation
and communication. We cannot tell the best size parameter for either variant
without excessive tests, but it is clear that both variants perform better by saving
communication. N

An improvement to this enigmatic optimised code is to use special skeletons
for specific tasks as e.g. mapping a function to a huge list in parallel. Skeletons
are generic patterns of parallelism which take the specific working functions as
arguments, as described and discussed for Eden in [10]. Since a skeleton is im-
plemented in a predefined library, it can do chunking implicitly and hidden from
the programmer. Programs using skeletons are often easier to read, but skeletons
are always restricted to their respective pattern of parallelism. In our example,
a map-fold skeleton could do the work, but we are still free to spoil the perfor-
mance by choosing an inappropriate chunk size, unless the skeleton developer
has chosen one for us. Anyway, the chunk size would always be statically fixed.

The idea of this paper is to investigate the effects of an automatic chunking
mechanism inside the runtime system of Eden, i.e. modifying the communication
layer to send data messages in a packet. Such a feature in the runtime system ap-
parently makes programming much easier and chooses the right chunking amount
automatically, but will of course introduce a considerable overhead.

106 Jost Berthold
3 Dynamic Chunking in the Eden Runtime Environment

Eden’s implementation extends the Glasgow-Haskell-Compiler (GHC, [13]) by a
parallel runtime environment, which is explicitly controlled by a small number
of primitive operations. Using these primitives, high-level process coordination
is specified in a functional module. The runtime system itself provides means to
instantiate new remote processes and to create and use the (now explicit) chan-
nels between them. Apart from that, it synchronises computations and controls
process termination. The Eden runtime system as a whole has been described in
the past (e.g. in [2,1]) and will thus be omitted in this paper, the Eden message
protocol being the only detail of topical interest, together with the more general
properties of its message passing mechanisms shared with GUM [17].

3.1 Eden Message Protocol and Its Penalties

Message Protocol. Eden processes communicate via 1:1 channels, which are
represented by a link from an outport to an inport, structures which the RTS
uses to address messages correctly. As a general rule, every message between
processes contains these two ports. Eden processes send the following message

types:
Msg.-Type Sender (Port) Receiver(Port) [Data]

Create Process instantiates a process at the receiver PE.
Terminate stops a remote thread which sends data to a closed inport.
Value sends a single value as a subgraph in normal form.

Head sends an element (subgraph in normal form) of a list.

In addition, we also have messages to and from the system manager program
SysMan.c, a stand-alone C + PVM program which controls the startup and
shutdown of all PEs. Those messages do not belong to the Eden protocol, but
to the system’s communication as a whole, since they are sent between the PEs
and not between processes.

Ready Announces a PE to SysMan (no data)

Task-Ids From SysMan. Contains the addresses of all PEs started (in PVM)
for the parallel computation.

Finish From SysMan: Stops the parallel system. (no data)
From one of the PEs to SysMan: initiate system stop.

The message Create Process is sent by a thread in the generator (parent)
process as an effect of the primitive operation createProcess#. The receiver un-
packs the included subgraph into its heap and starts a new process by creating
a thread to evaluate the subgraph.

Terminate is sent by the runtime system after garbage collection (and not
by a process), when the marking of a garbage collection does not reach a syn-
chronisation node which represents data evaluated remotely.

Dynamic Chunking in Eden 107

Messages Value and Head are the interesting ones for the work presented
here. They both transmit evaluated data (as single values or as stream data)
between processes. The included subgraph in normal form replaces a synchroni-
sation node in the receiver’s heap, which is linked to the receiving inport. This
is a direct replacement for single values, while for stream data, a new Cons clo-
sure is created and its references filled with the received subgraph and a new
synchronisation node for the rest of the stream/list.

Simple Cost Analysis. Following the concept of stream communication in
the language specification, if a child process receives or sends back a very long
list, every element is sent in a separate Head message. Since data transmission
is eager in Eden, the amount of messages is not limited by the demand-driven
evaluation (as it would be in GUM, the GpH runtime environment). Sending
a message always implies a certain penalty for the required actions in the un-
derlying communication middleware. This penalty has been quantified by using
special test primitives in a debug runtime system.

In the test program, we extract the time for all actions directly related to
the message passing subsystem by repeatedly linearising a graph structure of
variable size and either sending it or not — the difference indicates time spent for
sending actions. The test program does not care about receiving those linearised
subgraphs, so network latency is not involved. To quantify the influence of data
sizes sent, we use a simple linear model, where sending time is estimated as basic
time A\ for each message plus variable time linearly growing with the message
size in words, weighted by a factor .

Fig. 1 show results of the measurements and the time estimation obtained
by linear regression. The obtained values are A = 63.34 usec and 8 = 0.1 usec,
showing that the amount of data has only a small impact on the time needed to

Eden Message Sending Overhead
350

300

250

200

Time (usec)

150

100 .
o Eden: Sending time ——
50 : ‘ ‘ Estimated Time ———

0 500 1000 1500 2000 2500
Data Size (machine words)

Fig. 1. Message sending penalty measurement and linear model: time = \+3-datasize.

108 Jost Berthold

send a message to another PE, compared to the basic sending action itself. We see
that the linear model is not completely correct (influence of a step function, due
to properties of the underlying message-passing middleware PVM and TCP/IP),
but this deviation is not relevant to what we want to show.

3.2 Concept of Dynamic Low-Level Chunking

Summing up, dynamic chunking aims at decreasing the defacto number of stream
data messages between the PEs automatically by collecting “messages” sent by
one process to another one in a send buffer. Messages in the buffer are then
sent together in a “packet”!. This drastically reduces the amount of packets,
while their data size increases. As explained, reducing the number of messages
should be transparent to the language design and thus have no effect on language
properties. It is obtained by introducing a new low-level layer of communication
in the runtime system, whose particular functionality is explained in this section.

Collecting messages in the runtime system needs send buffers of sufficient
size in every PE of the parallel system. Their size is at least the maximum
size of one message plus additional room for administrative fields. We maintain
one send buffer per communication partner, which is every PE in the system.
Alternatives would be to have either only one send buffer or one buffer per
channel (i.e. sending thread). Both solutions have obvious disadvantages, either
in the administration of the buffers or in the achievable effects.

As well as the sender, the receiver of a packet must buffer it for processing
to make the change transparent to the next layer of abstraction, the message
processing unit of the runtime environment. We would in fact only need one
single buffer to receive packets, if we processed the whole packet at once. On
the other hand, having an own receive buffer for each PE makes it very easy to
implement a fair processing manner, since we can choose between several buffers
without losing data. The receive buffers are simply processed in a round robin
manner and one message at a time, realising a fair PE communication.

Buffering other messages than the Head message would slow down the com-
putation globally by artificial latency, which is absolutely clear for Create Pro-
cess and Terminate, but also valid for Value messages, since no other message
will follow a single value. To prevent deadlock situations (two PEs holding back
each other’s messages), the scheduler must as well force packets to be sent when
there are no runnable threads.

In total, the criteria to send a packet are:

— if the packet contains an urgent message.

— before adding a message, if this message is bigger than the remaining space
in the packet.

— immediately after adding a message, if no other message can fit into the
packet any more. The minimum message size in Eden is two ports.

! In the following, we refer to “message” and “packet” in the sense that a packet is
sent by the MP-System and contains several messages, where (virtually) “sending a
message” means to add it to the packet.

Dynamic Chunking in Eden 109

— during scheduling, if the packet age is more than a given timeout value. The
maximum age is a runtime system parameter accessible to the user.
— when the whole PE does not have any runnable threads (send all packets).

As well as the specific timeout value for packets (adjustable in milliseconds),
information about all actions related to sending packets can be collected for
statistical purpose. The methods which decide about